【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數(shù).

【答案】
(1)

證明:∵AC=AD,

∴∠ACD=∠ADC,

又∵∠BCD=∠EDC=90°,

∴∠ACB=∠ADE,

在△ABC和△AED中,

,

∴△ABC≌△AED(SAS);


(2)

解:當∠B=140°時,∠E=140°,

又∵∠BCD=∠EDC=90°,

∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.


【解析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組用儀器測測量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測得主塔頂部A的仰角為68°,已知測量儀器的高CD=1.3米,求主塔AE的高度(結果精確到0.1米)
(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課題小組為了解某品牌手機的銷售情況,對某專賣店該品牌手機在今年1~4月的銷售做了統(tǒng)計,并繪制成如圖兩幅統(tǒng)計圖(如圖).

(1)該專賣店1~4月共銷售這種品牌的手機臺;
(2)請將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“二月”所在的扇形的圓心角的度數(shù)是;
(4)在今年1~4月份中,該專賣店售出該品牌手機的數(shù)量的中位數(shù)是臺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學樓的高BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,點D在邊AC上,AD=5,DE⊥BC于點E,連結AE,則△ABE的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題: 如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,盤錦市某中學九年級的一個數(shù)學興趣小組在本年級學生中進行“學生最常用的交流方式”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為四類:A.面對面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調查數(shù)據(jù)結果繪制成以下兩幅不完整的統(tǒng)計圖:
(1)本次調查,一共調查了名同學,其中C類女生有名,D類男生有名;
(2)若該年級有學生150名,請根據(jù)調查結果估計這些學生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?
(3)在本次調查中以“C.短信與書信交流”為最常用交流方式的幾位同學中隨機抽取兩名同學參加盤錦市中學生書信節(jié)比賽,請用列舉法求所抽取的兩名同學都是男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,則下列函數(shù)圖象正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案