【題目】如圖所示,l是四邊形ABCD的對稱軸,AD∥BC,現(xiàn)給出下列結論: ①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:∵l是四邊形ABCD的對稱軸, ∴∠CAD=∠BAC,∠ACD=∠ACB,
∵AD∥BC,
∴∠CAD=∠ACB,
∴∠CAD=∠ACB=∠BAC=∠ACD,
∴AB∥CD,AB=BC,故①②正確;
又∵l是四邊形ABCD的對稱軸,
∴AB=AD,BC=CD,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形,
∴AO=OC,故④正確,
∵菱形ABCD不一定是正方形,
∴AB⊥BC不成立,故③錯誤,
綜上所述,正確的結論有①②④共3個.
故選C.
根據(jù)軸對稱圖形的性質,四邊形ABCD沿直線l對折能夠完全重合,再根據(jù)兩直線平行,內錯角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根據(jù)內錯角相等,兩直線平行即可判定AB∥CD,根據(jù)等角對等邊可得AB=BC,然后判定出四邊形ABCD是菱形,根據(jù)菱形的對角線互相垂直平分即可判定AO=OC;只有四邊形ABCD是正方形時,AB⊥BC才成立.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點O.
(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請你探索在圖2中,∠BOC的度數(shù),并說明理由或寫出證明過程.
(3)填空:在上述(1)(2)的基礎上可得在圖3中∠BOC= (填寫度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點O,猜想得∠BOC的度數(shù)為 (用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=20°,若將△ABC沿CD折疊,使點B落在AC邊上的點E處,則∠CED的度數(shù)是( )
A.30°
B.40°
C.50°
D.70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究歸納題:
(1)試驗分析:
如圖1,經過A點與B、C兩點分別作直線,可以作條;同樣,經過B點與A、C兩點分別作直線,可以作條;經過C點與A、B兩點分別作直線,可以作條.
通過以上分析和總結,圖1共有條直線.
(2)拓展延伸:
運用(1)的分析方法,可得:
圖2共有條直線;
圖3共有條直線;
(3)探索歸納:
如果平面上有n(n≥3)個點,且每3個點均不在同一直線上,經過其中兩點共有條直線.(用含n的式子表示)
(4)解決問題:
中職籃(CBA)2017——2018賽季作出重大改革,比賽隊伍數(shù)擴充為20支,截止2017年12月21日賽程過半,即每兩隊之間都賽了一場,請你幫助計算一下一共進行了多少場比賽?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知兩點A(1,2),B(﹣1,﹣1),若△ABC是以線段AB為一腰,對稱軸平行于y軸的等腰三角形,則C點的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】星期六,小亮從家里騎自行車到同學家去玩,然后返回,圖是他離家的路程y(千米)與時間x(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法不一定正確的是( )
A.小亮到同學家的路程是3千米
B.小亮在同學家逗留的時間是1小時
C.小亮去時走上坡路,回家時走下坡路
D.小亮回家時用的時間比去時用的時間少
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣2x+2,且l1與x軸交于點D,直線l2經過點A(4,0),B(0,﹣1),兩直線交于點C.
(1)點D的坐標為;
(2)求直線l2的表達式;
(3)求△ADC的面積;
(4)若有過點C的直線CE把△ADC的面積分為2:1兩部分,請直接寫出直線CE的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com