【題目】如圖所示,點O在直線AB上,OC⊥OD,∠EDO與∠1互余,OF平分∠COD交DE于點F,若∠OFD=70°,求∠1的度數(shù).
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡).
(2)解∵∠EDO與∠1互余
∴∠EDO+∠1=90°
∵OC⊥OD
∴∠COD=90°
∴∠EDO+∠1+∠COD=180°
∴______+______=180°
∴ED∥AB.(______)
∴∠AOF=∠OFD=70°(______)
∵OF平分∠COD,(已知)
∴∠COF=∠COD=45°(______)
∴∠1=∠AOF-∠COF=______°.
【答案】(1)見解析;(2)∠EDO,∠AOD,同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等;角平分線的定義,25
【解析】
(1)依據(jù)OF平分∠COD交DE于點F,進行作圖即可;
(2)依據(jù)同旁內(nèi)角互補,兩直線平行,判定ED∥AB,再根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠1的度數(shù).
解:(1)如圖所示,OF平分∠COD交DE于點F,
(2)∵∠EDO與∠1互余,
∴∠EDO+∠1=90°,
∵OC⊥OD,
∴∠COD=90°,
∴∠EDO+∠1+∠COD=180°,
∴∠EDO+∠AOD=180°,
∴ED∥AB,(同旁內(nèi)角互補,兩直線平行)
∴∠AOF=∠OFD=70°,(兩直線平行,內(nèi)錯角相等)
∵OF平分∠COD,(已知)
∴∠COF=∠COD=45°,(角平分線的定義)
∴∠1=∠AOF-∠COF=25°.
故答案為:∠EDO,∠AOD,同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等;角平分線的定義,25.
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負):
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車________ 輛;
(2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車______輛;
(3)該廠實行每日計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務,則超過部分每輛另獎勵15元;少生產(chǎn)一輛另扣20元,那么該廠工人這一周的工資總額是多少?
(4)若將上面第(3)問中“實行每日計件工資制”改為“實行每周計件工資制”,其他條件不變,在此方式下這一周工人的工資與按日計件的工資哪一個更多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
(1)如圖1,可以求出陰影部分的面積是______。▽懗蓛蓴(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個長方形,它的寬是______,長是______,面積是______.(寫成多項式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式______.(用式子表達)
(4)運用你所得到的公式,計算下列各題:
①10.3×9.7
②(2m+n-p)(2m-n+p)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距___千米。
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是___小時。
(3)B出發(fā)后___小時與A相遇。
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,___小時與A相遇,相遇點離B的出發(fā)點___千米。在圖中表示出這個相遇點C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A=3x2+x+2,B=﹣3x2+9x+6.
(1)求2A﹣B;
(2)若2A﹣B與互為相反數(shù),求C的表達式;
(3)在(2)的條件下,若x=2是C=2x+7a的解,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解決數(shù)學問題時,我們一般先仔細讀題干,找出有用信息作為已知條件,然后用這些信息解決問題,但是有的題目信息比較明顯,我們把這樣的信息稱為顯性條件,而有的信息不太明顯需要結(jié)合圖形,特殊式子成立的條件,實際問題等發(fā)現(xiàn)隱含信息作為條件,這樣的條件稱為隱含條件,所以我們在做題時更注意發(fā)現(xiàn)題目中的隱含條件
(閱讀理解)
讀下面的解題過程,體會加何發(fā)現(xiàn)隱含條件,并回答.
化簡:.解:隱含條件1-3x≥0,解得:x,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x
(啟發(fā)應用)
已知△ABC三條邊的長度分別是,記△ABC的周長為C△ABC
(1)當x=2時,△ABC的最長邊的長度是______(請直接寫出答案).
(2)請求出C△ABC(用含x的代數(shù)式表示,結(jié)果要求化簡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市在“元旦”期間對顧客實行優(yōu)惠,規(guī)定一次性購物優(yōu)惠辦法:
少于200元,不予優(yōu)惠;高于200元但低于500元時,九折優(yōu)惠;消費500元或超過500元時,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折優(yōu)惠.根據(jù)優(yōu)惠條件完成下列任務:
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該超市一次性購物x元,當x小于500但不小于200時,他實際付款0.9x,當x大于或等于500元時,他實際付款多少元?(用含x的代數(shù)式表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a的式子表示王老師兩次購物實際付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的對稱中心為坐標原點O,AD⊥y軸于點E(點A在點D的左側(cè)),經(jīng)過E、D兩點的函數(shù)y=﹣x2+mx+1(x≥0)的圖象記為G1,函數(shù)y=﹣x2﹣mx﹣1(x<0)的圖象記為G2,其中m是常數(shù),圖象G1、G2合起來得到的圖象記為G.設矩形ABCD的周長為L.
(1)當點A的橫坐標為﹣1時,求m的值;
(2)求L與m之間的函數(shù)關系式;
(3)當G2與矩形ABCD恰好有兩個公共點時,求L的值;
(4)設G在﹣4≤x≤2上最高點的縱坐標為y0,當≤y0≤9時,直接寫出L的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com