【題目】已知:如圖,在ABC中,AC=BC,以BC為直徑的O與邊AB相交于點(diǎn)D,DEAC,垂足為點(diǎn)E.

(1)求證:點(diǎn)D是AB的中點(diǎn);

(2)求證:DE是O的切線;

(3)若O的直徑為18,cosB=,求DE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)4.

【解析】

(1)連接CD,由BC為直徑可知CD⊥AB,又BC=AC,由等腰三角形的底邊“三線合一”證明結(jié)論;

(2)連接OD,則OD為△ABC的中位線,OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;

(3)連接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,則AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.

(1)證明:連接CD,

BC是O的直徑,

∴CD⊥AB,又∵AC=BC,

∴AD=BD,

點(diǎn)D是AB的中點(diǎn);

(2)證明:連接OD,

∵BD=DA,BO=OC,

DO是ABC的中位線,

∴DO∥AC,

∵DE⊥AC,

∴DE⊥DO,即DE是O的切線;

(3)∵AC=BC,

∴∠B=∠A,

∴cos∠B=cos∠A=,

∵cos∠B==,BC=18,

∴BD=6,

∴AD=6,

∵cos∠A==

∴AE=2,

在RtAED中,DE==4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFBCABE,交ACF,過(guò)點(diǎn)OODACD,下列四個(gè)結(jié)論:

EFBE+CF

BOC90°+A;

點(diǎn)O到△ABC各邊的距離相等;

設(shè)ODm,AE+AFn,則SAEFmn

其中正確的結(jié)論是( 。

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在某一次實(shí)驗(yàn)中,測(cè)得兩個(gè)變量之間的關(guān)系如下表所示:

自變量x

1

2

3

4

12

因變量y

12.03

5.98

3.04

1.99

1.00

請(qǐng)你根據(jù)表格回答下列問(wèn)題:

① 這兩個(gè)變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請(qǐng)你簡(jiǎn)要說(shuō)明理由。

②請(qǐng)你寫(xiě)出這個(gè)函數(shù)的解析式。

③表格中空缺的數(shù)值可能是多少?請(qǐng)你給出合理的數(shù)值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)開(kāi)展社會(huì)主義核心價(jià)值觀演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績(jī)各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿(mǎn)分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問(wèn)題:

1)根據(jù)圖示求出表中的、、

平均數(shù)

中位數(shù)

眾數(shù)

九(1

85

九(2

85

100

, ,

2)小明同學(xué)已經(jīng)算出了九(2)班復(fù)賽成績(jī)的方差:

,請(qǐng)你求出九(1)班復(fù)賽成績(jī)的方差;

3)根據(jù)(1)、(2)中計(jì)算結(jié)果,分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示的圖形,像我們常見(jiàn)的符號(hào)——箭號(hào).我們不妨把這樣圖形叫做箭頭四角形

探究:

1)觀察箭頭四角形,試探究、、之間的關(guān)系,并說(shuō)明理由;

應(yīng)用:

2)請(qǐng)你直接利用以上結(jié)論,解決以下兩個(gè)問(wèn)題:

①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過(guò)點(diǎn)、,若,則

②如圖3,2等分線(即角平分線)、相交于點(diǎn),若

,求的度數(shù);

拓展:

3)如圖4,分別是、2020等分線(),它們的交點(diǎn)從上到下依次為、、、.已知,,則 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿著CB方向向點(diǎn)B3cm/s的速度運(yùn)動(dòng).點(diǎn)PQ分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).

1)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?

2)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQBA是矩形?

3)經(jīng)過(guò)多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°

(1)若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大;

(2)若點(diǎn)C在劣弧BD上,直接寫(xiě)出∠ACD的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案