【題目】如圖,在RtABC中,AD為斜邊BC上的中線,AEBC,CEAD,EC的垂直平分線FGAC點(diǎn)G,連接DG,若∠ADG24°,則∠B的度數(shù)為_____度.

【答案】38

【解析】

連接GE,證明四邊形ADCE為菱形,得到∠DAC∠EAC,根據(jù)△AGD≌△AGE得到∠AEG∠ADG24°,根據(jù)線段垂直平分線的性質(zhì)得到GCGE,根據(jù)等腰三角形的性質(zhì)得到∠GEC∠ECA,根據(jù)平行線的性質(zhì)列式計(jì)算即可.

解:連接GE,

∵AE∥BCCE∥AD,

四邊形ADCE為平行四邊形,

∵Rt△ABC中,AD為斜邊BC上的中線,

∴ADBCDC,

平行四邊形ADCE為菱形,

∴∠DAC∠EAC

△AGD△AGE中,

,

∴△AGD≌△AGESAS

∴∠AEG∠ADG24°,

四邊形ADCE為菱形,

∴∠DCA∠ECA,

∵GFEC的垂直平分線,

∴GCGE,

∴∠GEC∠ECA

∵AE∥BC,

∴∠AEC+∠BCE180°,

∴3∠ACB+24°180°,

解得,∠ACB52°,

∴∠B90°52°38°

故答案為:38

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形紙片中,沿過(guò)點(diǎn)的直線折疊這個(gè)三角形,使點(diǎn)落在邊上的點(diǎn)處,折痕為,則下列結(jié)論:

平分;

;

③若,,則的周長(zhǎng)為7

;

⑤若平分交于點(diǎn),當(dāng)時(shí),.其中結(jié)論正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )

A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從相距420kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問(wèn)題:

1)甲車的速度是   千米/時(shí),乙車的速度是   千米/時(shí);

2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;

3)甲車出發(fā)多長(zhǎng)時(shí)間后兩車相距90千米?請(qǐng)你直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC=80°,BAC=40°.

(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點(diǎn)D、E.并連結(jié)BD;(保留作圖痕跡,不寫作法)

(2)證明:ABC∽△BDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線x0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線x0)的交點(diǎn)有( )

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 0個(gè),或1個(gè),或2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:一般情形下等式1不成立,但有些特殊實(shí)數(shù)可以使它成立,例如:x2y2時(shí),1成立,我們稱(2,2)是使1成立的神奇數(shù)對(duì).請(qǐng)完成下列問(wèn)題:

1)數(shù)對(duì)(,4),(1,1)中,使1成立的神奇數(shù)對(duì)   ;

2)若(5t,5+t)是使1成立的神奇數(shù)對(duì),求t的值;

3)若(mn)是使1成立的神奇數(shù)對(duì),且ab+mbc+n,求代數(shù)式(ac212ab)(bc)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線ACBD交于點(diǎn)ODEACBA的延長(zhǎng)線于點(diǎn)E

1)求證:BDDE;

2)若∠ACB30°,BD8,求四邊形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,如果過(guò)項(xiàng)點(diǎn)的一條直線把這個(gè)三角形分割成兩個(gè)三角形,其中一個(gè)為等腰三角形,另一個(gè)為直角三角形,則稱這條直線為的關(guān)于點(diǎn)的二分割線.例如:如圖1,中,,,若過(guò)頂點(diǎn)的一條直線于點(diǎn),若,顯然直線的關(guān)于點(diǎn)的二分割線.

1)在圖2中,,.請(qǐng)?jiān)趫D2中畫出關(guān)于點(diǎn)的二分割線,且角度是

2)已知,在圖3中畫出不同于圖1,圖2,所畫同時(shí)滿足:為最小角;②存在關(guān)于點(diǎn)的二分割線.的度數(shù)是

3)已知,同時(shí)滿足:①為最小角;②存在關(guān)于點(diǎn)的二分割線.請(qǐng)求出的度數(shù)(用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案