如圖,在△ABC 中,BA=BC,以AB為直徑作半圓⊙O,交AC于點D.連結(jié)DB,過點D 作DE⊥BC,
垂足為點E.
(1)求證:AD = CD;
(2)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(3)求證:DB2 = AB·BE.
(1)∵ AB是直徑∴ ∠ADB=90°∵ BA = BC∴ AD = CD(2)DE與⊙O相切;(3)可證明:
△BED∽△BDC得到證明DB2 = AB·BE
【解析】
試題分析:證明:(1)∵ AB是直徑∴ ∠ADB=90°∵ BA = BC∴ AD = CD
(2)DE與⊙O相切;連接OD,
∵CD=AD
又∵AO=BO
∴OD是△ABC的中位線
∴OD∥BC
∵∠DEB=90°
∴∠ODE=90°
即OD⊥DE
∴DE為⊙O的切線。
(3)∵∠BED =∠BDC =900,∠EBD =∠DBC
∴△BED∽△BDC
∴
又∵AB=BC
∴
∴BD2=AB?BE
考點:圓及相似三角形判定性質(zhì)
點評:本題難度中等,主要考查學(xué)生對圓及相似三角形判定性質(zhì)知識點的掌握與運用能力。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com