【題目】動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為 ;
(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.
【答案】(1);(2)
【解析】
(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結(jié)果,根據(jù)概率公式即可解答.
(1);
(2)方法1:根據(jù)題意可畫樹狀圖如下: 方法2:根據(jù)題意可列表格如下:
弟弟 姐姐 | A | B | C | D |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
由列表(樹狀圖)可知,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結(jié)果有1種:(A,B).
∴P(姐姐抽到A佩奇,弟弟抽到B喬治)
科目:初中數(shù)學 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況:
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導“節(jié)約用水,綠色環(huán)保”的意識,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭達到Ⅱ級標準?并估算這些Ⅱ級用水戶的總水費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“非常距離”為|y1﹣y2|.
例如:點P1(1,1),點P2(2,3),因為|1﹣2|<|1﹣3|,所以點P1與點P2的“非常距離”為|1﹣3|=2,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).
(1)已知點A(-,0),B為y軸上的一個動點.
①若點B(0,3),則點A與點B的“非常距離”為______;
②若點A與點B的“非常距離”為2,則點B的坐標為_______;
③直接寫出點A與點B的“非常距離”的最小值為_______;
(2)已知點D(0,1),點C是直線y=﹣x+3上的一個動點,如圖2,求點C與點D“非常距離”的最小值及相應的點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠BAC與∠ACD的角平分線交于點E,且AC=13,AE=5,則AB與CD之間的距離是( )
A.7B.8C.D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB上一點,AE=AD,且BF∥CD,AF⊥CE的延長線于F.連接DE交對角線AC于H.下列結(jié)論:①AC垂直平分ED;②AE=BE;③CE=2BF;④BE=2EF.其中結(jié)論正確的是_______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE平分∠BAC交BC于點E,O是AB上一點,經(jīng)過A,E兩點的⊙O交AB于點D,連接DE,作∠DEA的平分線EF交⊙O于點F,連接AF.
(1)求證:BC是⊙O的切線;
(2)若sin∠EFA=,AF=,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E在線段AC上,D在線段AB的延長線上,連DE交BC于F,過點E作EG⊥BC于G,若BD=CE,求證:FG=BF+CG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點D為AB的中點.
(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以1.5cm/s的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經(jīng)過_____秒后,點P與點Q第一次在△ABC的AC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com