如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),點(diǎn)Q的橫坐標(biāo)x(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖②所示,請(qǐng)寫(xiě)出點(diǎn)Q開(kāi)始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;
(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo);
(4)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等?若能,寫(xiě)出所有符合條件的t的值;若不能,請(qǐng)說(shuō)明理由.
(1)Q(1,0)(1分)Q的圖象是一條直線,且過(guò)點(diǎn)(11,0).
且點(diǎn)P運(yùn)動(dòng)速度每秒鐘1個(gè)單位長(zhǎng)度.(2分)

(2)過(guò)點(diǎn)B作BF⊥y軸于點(diǎn)F,BE⊥x軸于點(diǎn)E,則BF=8,OF=BE=4.
∴AF=10-4=6.
在Rt△AFB中,AB=
82+62
=10,(3分)
過(guò)點(diǎn)C作CG⊥x軸于點(diǎn)G,與FB的延長(zhǎng)線交于點(diǎn)H.
∵∠ABC=90°,AB=BC,
∴△ABF≌△BCH.
∴BH=AF=6 CH=BF=8.
∴OG=FH=8+6=14,CG=8+4=12.
∴所求C點(diǎn)的坐標(biāo)為(14,12).(4分)

(3)過(guò)點(diǎn)P作PM⊥y軸于點(diǎn)M,PN⊥x軸于點(diǎn)N,
則△APM△ABF.
AP
AB
=
AM
AF
=
MP
BF
,
t
10
=
AM
6
=
MP
8

∴AM=
3
5
t,PM=
4
5
t,
∴PN=OM=10-
3
5
t,ON=PM=
4
5
t.
設(shè)△OPQ的面積為S(平方單位),
∴S=
1
2
×(10-
3
5
t)(1+t)=5+
47
10
t-
3
10
t2(0≤t≤10),(5分)
說(shuō)明:未注明自變量的取值范圍不扣分.
∵a=-
3
10
<0

∴當(dāng)t=-
47
10
2×(-
3
10
)
=
47
6
時(shí),△OPQ的面積最大.(6分)
此時(shí)P的坐標(biāo)為(
94
15
,
53
10
).(7分)

(4)OP與PQ相等,組成等腰三角形,即當(dāng)P點(diǎn)的橫坐標(biāo)等于Q點(diǎn)的橫坐標(biāo)的一半時(shí),
當(dāng)P在BC上時(shí),8+
3
5
(t-10)=
1
2
(t+1),解得:t=-15(舍去)
當(dāng)P在CD上時(shí),14-
4
5
(t-20)=
1
2
(t+1),解得:t=
295
13

即當(dāng)t=
295
13
時(shí),OP與PQ相等.
當(dāng)P在BA上時(shí),t=
5
3
,OP與PQ相等,(9分)
∴當(dāng)t=
295
13
或t=
5
3
時(shí),OP與PQ相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ為正方形?若存在,求點(diǎn)P、Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將二次函數(shù)y=2x2-8x-5的圖象沿它的對(duì)稱軸所在直線向上平移,得到一條新的拋物線,這條新的拋物線與直線y=kx+1有一個(gè)交點(diǎn)為(3,4).
求:(1)新拋物線的解析式及后的值;
(2)新拋物線與y=kx+1的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G.
(1)點(diǎn)C、D的坐標(biāo);
(2)求頂點(diǎn)在直線y=
3
x-2
3
上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E.平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一個(gè)拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,建立如圖所示的平面直角坐標(biāo)系.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在對(duì)稱軸右邊1m處,橋洞離水面的高是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=
3
5
x-4分別交x、y軸于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求B點(diǎn)的坐標(biāo);
(2)若D是OA中點(diǎn),過(guò)A的直線l(3)把△AOB分成面積相等的兩部分,并交y軸于點(diǎn)C.
①求過(guò)A、C、D三點(diǎn)的拋物線的函數(shù)解析式;
②把①中的拋物線向上平移,設(shè)平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為M、N,試問(wèn)過(guò)M、N、B三點(diǎn)的圓的面積是否存在最小值?若存在,求出圓的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某玩具廠授權(quán)生產(chǎn)工藝品福娃,每日最高產(chǎn)量為30只,且每日生產(chǎn)的產(chǎn)品全部出售.已知生產(chǎn)x只福娃的成本為R(元),每只售價(jià)P(元),且R,P與x的表達(dá)式分別為R=50+3x,P=170-2x.當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某玩具廠計(jì)劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價(jià)每只為P(元),且R、P與x的關(guān)系式分別為R=500+30x,P=170-2x.
(1)當(dāng)日產(chǎn)量為多少時(shí),每日獲得的利潤(rùn)為1750元?
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一大片空地上有一堵墻(線段AB),現(xiàn)有鐵欄桿40m,準(zhǔn)備充分利用這堵墻建造一個(gè)封閉的矩形花圃.
(1)如果墻足夠長(zhǎng),那么應(yīng)如何設(shè)計(jì)可使矩形花圃的面積最大?
(2)如果墻AB=8m,那么又要如何設(shè)計(jì)可使矩形花圃的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案