拋物線與y軸交于點(0,3).
(1)求拋物線的解析式;(2分)
(2)求拋物線與坐標軸的交點坐標;(6分)
(3)① 當x取什么值時,y>0 ?
② 當x取什么值時,y的值隨x的增大而減小?(4分)
(1);(2)(-1,0),(3,0),(0,3);(3)①-1<x<3;②x>1.
解析試題分析:(1)將(0,3)代入求得m,即可得出拋物線的解析式;(2)令y=0,求得與x軸的交點坐標;令x=0,求得與y軸的交點坐標;(3)畫出圖象,①當y>0時,即圖象在一、二象限內(nèi)的部分;②在對稱軸的右側(cè),y的值隨x的增大而減。
試題解析:(1)∵拋物線與y軸交于(0,3)點,
∴,解得m=3.
∴拋物線的解析式為;
(2)令y=0,得,解得x=-1或3,
∴拋物線與x軸的交點坐標(-1,0),(3,0);
令x=0,得y=3,
∴拋物線與y軸的交點坐標(0,3).
(3)根據(jù)對稱軸為x=1,頂點坐標(1,4),作出圖象如圖,則由圖象知:
①當-1<x<3時,y>0;②當x>1時,y的值隨x的增大而減小.
考點:1. 曲線上點的坐標與方程的關(guān)系;2.拋物線與坐標軸的交點;3.二次函數(shù)的圖象和性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點)。已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=x(cm).
(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線過兩點(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點都在雙曲線(x>0)上,它們的橫坐標分別為,O為坐標原點,記,點Q在雙曲線(x<0)上,過Q作QM⊥y軸于M,記。
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司投資新建了一商場,共有商鋪30間.據(jù)預(yù)測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5000元,少租出商鋪1間.(假設(shè)年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費用2萬元,未租出的商鋪每間每年交各種費用1萬元.
(1)當每間商鋪的年租金定為12萬元時,能租出多少間?年收益多少萬元?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標系.
①求拋物線的解析式;
②要使高為3米的船通過,則其寬度須不超過多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過,則其寬度須不超過多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在關(guān)于x,y的二元一次方程組中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當a為何值時,S有最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(2,0)、B(12,0),且y的最大值為50,求這個二次函數(shù)的解析式;
(2)拋物線頂點P(2,1),且過A(-1,10),求拋物線的解析式.[來
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com