如圖,直線ABx軸、y軸分別交于點(diǎn)AB,AB = 5,cos∠OAB =,直線分別與直線ABx軸、y軸交于點(diǎn)C、D、E

⑴求證:∠OED =∠OAB;

⑵直線DE上是否存在點(diǎn)P,使△PBE與△AOB相似,若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

解:(1)在Rt△OAB中,∵AB=5,=

OA=4,OB=3,∴=

,則,∴OE=1.

,則,∴,∴OD=

=

= 

∵∠EOD=∠AOB=90°,

∴△EOD∽△AOB

=

(2)分兩種情況:

當(dāng)∠EBP與∠AOB是對應(yīng)角時(shí),如圖1,則∠EBP=∠AOB=90°.

由(1)知,=,OA=BE=4,

∴△BEP≌△AOB,

BP=OB=3,將代入中,得

∴點(diǎn)P(3,3).當(dāng)∠EBP與∠ABO是對應(yīng)角時(shí),如圖2,則∠EBP=∠ABO

=,∴△ EPB∽△AOB

∵點(diǎn)P和點(diǎn)D都在直線CD上,

∴點(diǎn)C即為點(diǎn)P.

設(shè)直線AB解析式為

將點(diǎn)A(4,0),點(diǎn)B(0,3)代入中,得

,∴,∴,

,∴,∴點(diǎn)P(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與x軸交于點(diǎn)C,與反比例函數(shù)y=
kx
在第二象限的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(-4,m).
(1)求k,m的值; (2)求直線AB的解析式; (3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點(diǎn)A、B,AB=5,cos∠OAB=
4
5
,直線y=
4
3
x-1
分別與直精英家教網(wǎng)線AB、x軸、y軸交于點(diǎn)C、D、E.
(1)求證:∠OED=∠OAB;
(2)直線DE上是否存在點(diǎn)P,使△PBE與△AOB相似,若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo);(2)求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與x軸、y軸分別相交于A、B兩點(diǎn),將直線AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線A1B1
(1)在圖中畫出直線A1B1
(2)求出直線A1B1的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(2,0),∠ABO=30°.在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)O外),使得△APB與△AOB全等.請寫出所有符合條件的點(diǎn)P的坐標(biāo)
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

同步練習(xí)冊答案