化簡(jiǎn)(0<x<a)等于( )
A.2
B.2a
C.-2
D.-2a
【答案】分析:先根據(jù):化簡(jiǎn),再根據(jù)0<x<a去絕對(duì)值,合并即可.
解答:解:原式=|x-a|+|x+a|,
∵0<x<a,
∴原式=-(x-a)+x+a=-x+a+x+a=2a.
故選B.
點(diǎn)評(píng):本題考查了二次根式的性質(zhì)和二次根式的化簡(jiǎn):
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖所示,圖1是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中的虛線剪成四個(gè)全等的小長(zhǎng)方形,再按圖2圍成一個(gè)較大的正方形.

(1)請(qǐng)用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡(jiǎn));
(2)比較(1)的兩種結(jié)果,你能得到怎樣的等量關(guān)系?
(3)請(qǐng)你用(2)中得到的等量關(guān)系解決下面問(wèn)題:如果m-n=4,mn=12,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)請(qǐng)先將下式化簡(jiǎn),再選擇一個(gè)你喜歡又使原式有意義的數(shù)代入求值(
a
a-1
-1)÷
1
a2-2a+1

(2)計(jì)算:
4
+(
1
3
)-1-(
10
-
5
)0-2tan45°
;
(3)某地為了解從2004年以來(lái)初中學(xué)生參加基礎(chǔ)教育課程改革的情況,隨機(jī)調(diào)查了本地區(qū)1000名初中學(xué)生學(xué)習(xí)能力優(yōu)秀的情況.調(diào)查時(shí),每名學(xué)生可以在動(dòng)手能力,表達(dá)能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學(xué)習(xí)等六個(gè)方面中選擇自己認(rèn)為是優(yōu)秀的項(xiàng).調(diào)查后繪制了如圖所示的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖反映的信息解答下列問(wèn)題:精英家教網(wǎng)
①學(xué)生獲得優(yōu)秀人數(shù)最多的一項(xiàng)和最有待加強(qiáng)的一項(xiàng)各是什么?
②這1000名學(xué)生平均每人獲得幾個(gè)項(xiàng)目為優(yōu)秀?
③若該地區(qū)共有2萬(wàn)名初中學(xué)生,請(qǐng)估計(jì)他們表達(dá)能力為優(yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

你見(jiàn)過(guò)像
4-2
3
,
48
-
45
等這樣的根式嗎?這一類根式叫做復(fù)合二次根式,有一些復(fù)合二次根式可以化簡(jiǎn).如
4-2
3
=
3-2
3
×1+1
=
(
3
-1)
2
=
3
-1
.請(qǐng)用上述方法化簡(jiǎn)
4+
15
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某花圃用花盆培育某種花苗,經(jīng)過(guò)試驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系,每盆植入3株時(shí),平均單株盈利3元,以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元,要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?
小明的解法如下:
解:設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,平均單株盈利為(3-0.5x)元,
由題意得(x+3)(3-0.5x)=10,
化簡(jiǎn),整理得:x2-3x+2=0
解這個(gè)方程,得:x1=1,x2=2,
答:要使每盆的盈利達(dá)到10元,每盆應(yīng)該植入4株或5株.
(1)本題涉及的主要數(shù)量有每盆花苗株數(shù),平均單株盈利,每盆花苗的盈利等,請(qǐng)寫出兩個(gè)不同的等量關(guān)系:
 

(2)請(qǐng)用一種與小明不相同的方法求解上述問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•延慶縣二模)閱讀下面材料:
小偉遇到這樣一個(gè)問(wèn)題:如圖1,在△ABC(其中∠BAC是一個(gè)可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時(shí)針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時(shí),此題可解(如圖2).
請(qǐng)你回答:AP的最大值是
6
6

參考小偉同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),則AP+BP+CP的最小值是
2
2
+2
6
(或不化簡(jiǎn)為
32+16
3
2
2
+2
6
(或不化簡(jiǎn)為
32+16
3
.(結(jié)果可以不化簡(jiǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案