【題目】如圖,RtABC中,ABC=90°,以AB為直徑作半圓O交AC與點D,點E為BC的中點,連接DE.

(1)求證:DE是半圓O的切線.

(2)若BAC=30°,DE=2,求AD的長.

【答案】(1)見解析;(2)6.

【解析】

試題分析:(1)連接OD,OE,由AB為圓的直徑得到三角形BCD為直角三角形,再由E為斜邊BC的中點,得到DE=BE=DC,再由OB=OD,OE為公共邊,利用SSS得到三角形OBE與三角形ODE全等,由全等三角形的對應(yīng)角相等得到DE與OD垂直,即可得證;

(2)在直角三角形ABC中,由BAC=30°,得到BC為AC的一半,根據(jù)BC=2DE求出BC的長,確定出AC的長,再由C=60°,DE=EC得到三角形EDC為等邊三角形,可得出DC的長,由AC﹣CD即可求出AD的長.

(1)證明:連接OD,OE,BD,

AB為圓O的直徑,

∴∠ADB=BDC=90°

在RtBDC中,E為斜邊BC的中點,

DE=BE

OBEODE中,

∴△OBE≌△ODE(SSS),

∴∠ODE=ABC=90°,

則DE為圓O的切線;

(2)在RtABC中,BAC=30°,

BC=AC,

BC=2DE=4,

AC=8

∵∠C=60°,DE=CE,

∴△DEC為等邊三角形,即DC=DE=2,

則AD=AC﹣DC=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對稱圖形又是軸對稱圖形的是(

A.角 B.等邊三角形 C.平行四邊形 D.圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個數(shù)的立方根是﹣3,則這個數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O(shè)為原點的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且ODE的面積是9,則k=( )

A. B. C. D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=kx+m和二次函數(shù)y2=ax2+bx+c的圖象如圖所示,它們的兩個交點的橫坐標(biāo)是1和4,那么能夠使得y1<y2的自變量x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,A=36°,AB=AC,BD是ABC的角平分線,下列結(jié)論:

ABD,BCD都是等腰三角形;

②AD=BD=BC;

③BC2=CDCA;

④D是AC的黃金分割點

其中正確的是( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BCx軸,垂足為點C(﹣3,0).

(1)求二次函數(shù)的表達式;

(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NPx軸,垂足為點P,交AB于點M,求MN的最大值;

(3)在(2)的條件下,點N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市一天的最高氣溫為2,最低氣溫為﹣8,那么這天的最高氣溫比最低氣溫高( .

A.﹣10 B.﹣6 C.10 D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC=5,BC=6,正方形DEFG的頂點D、G分別在AB、AC上,EF在BC上.

(1)求正方形DEFG的邊長;

(2)如圖2,在BC邊上放兩個小正方形DEFG、FGMN,則DE=

查看答案和解析>>

同步練習(xí)冊答案