【題目】已知線段AB,點C、點D在直線AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,則AB=______.
【答案】6
【解析】
要分三種情況進(jìn)行討論:①當(dāng)C在線段AB上時,點D在線段AB的延長線上;②當(dāng)點C在線段AB的反向延長線時,點D在AB上時;③點C、D在線段AB上時,C、D兩點重合,不成立.
解:分三種情況進(jìn)行討論:
①當(dāng)C在線段AB上時,點D在線段AB的延長線上,
∵AC:CB=1:2,
∴BC=AB,
∵BD:AB=2:3,
∴BD=AB,
∴CD=BC+BD=,
∴AB=6;
②當(dāng)點C在線段AB的反向延長線時,
∵BD:AB=2:3,
∴AB=3AD,
∵AC:CB=1:2,
∴AC=AB,
∴CD=AC+AD=4AD=8,
∴AD=2,
∴AB=6;
③點C、D在線段AB上時,C、D兩點重合,不成立.
故AB=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字,根據(jù)所給信息解答下面問題:把幾個數(shù)用大括號括起來,中間用逗號隔開,如:{3,4};{﹣3,6,8,18},其中大括號內(nèi)的數(shù)稱其為集合的元素.如果一個集合滿足:只要其中有一個元素a,使得﹣2a+4也是這個集合的元素,這樣的集合稱為條件集合.例如;{3,﹣2},因為﹣2×3+4=﹣2,﹣2恰好是這個集合的元素所以呂{3,﹣2}是條件集合:例如;(﹣2,9,8,},因為﹣2×(﹣2)+4=8,8恰好是這個集合的元素,所以{﹣2,9,8,}是條件集合.
(1)集合{﹣4,12}是否是條件集合?
(2)集合{,﹣,}是否是條件集合?
(3)若集合{8,n}和{m}都是條件集合.求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式: , ,給出定義如下:
我們稱使等式成立的一對有理數(shù), 為“共生有理數(shù)對”,記為(, ),如:數(shù)對(, ),(, ),都是“共生有理數(shù)對”.
(1)判斷數(shù)對(, ),(, )是不是“共生有理數(shù)對”,寫出過程;
(2)若(, )是“共生有理數(shù)對”,求的值;
(3)若(, )是“共生有理數(shù)對”,則(, ) “共生有理數(shù)對”(填“是”或“不是”);說明理由;
(4)請再寫出一對符合條件的 “共生有理數(shù)對”為 (注意:不能與題目中已有的“共生有理數(shù)對”重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個頂點A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【操作發(fā)現(xiàn)】
如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,點B的對應(yīng)點為B′,點C的對應(yīng)點為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B= .
(3)【問題解決】
如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.
…
請參考小明同學(xué)的想法,完成該問題的解答過程.(一種方法即可)
(4)【靈活運(yùn)用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點A的坐標(biāo)為(﹣3,0),點B的坐標(biāo)為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運(yùn)動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運(yùn)動,當(dāng)其中一點到達(dá)終點時,另一點隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.連接PQ.
(1)填空:b= , c=;
(2)在點P,Q運(yùn)動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使△PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運(yùn)動時間t;若不存在,請說明理由;
(4)如圖②,點N的坐標(biāo)為(﹣ ,0),線段PQ的中點為H,連接NH,當(dāng)點Q關(guān)于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)至,甲、乙兩隊舉行了一年一度的賽龍舟比賽,兩隊在比賽時的路程米與時間分鐘之間的函數(shù)關(guān)系圖象如圖所示,請你根據(jù)圖象,回答下列問題:
這次龍舟賽的全程是______ 米,______ 隊先到達(dá)終點;
求乙與甲相遇時乙的速度;
求出在乙隊與甲相遇之前,他們何時相距100米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com