【題目】1)如圖,正方形的邊,分別在正方形的邊,上.

填空:的數(shù)量關(guān)系是 的位置關(guān)系是 .

2)把正方形繞點(diǎn)旋轉(zhuǎn)到如圖位置,(1)中的結(jié)論是否成立?若成立,寫成證明過程,若不存在,請(qǐng)說明理由.

3)設(shè)正方形的邊長為4,正方形的邊長為,正方形繞點(diǎn)旋轉(zhuǎn)過程中,若、、三點(diǎn)共線,求的長.(直接寫出結(jié)果)

【答案】(1) ;(2)詳見解析;(3)

【解析】

1)根據(jù)正方形的性質(zhì)即可求解;

2)先證明,得到,由得到,再利用得到,即可得到;

3)根據(jù)分兩種情況討論作圖連接連接,根據(jù)含30°的直角三角形的性質(zhì)即可求解.

1)∵正方形的邊,分別在正方形的邊,

AG=AE,AD=AB,AB⊥AD

∴AD-AG=AB-AE,

,

故填:; ;

2)證明:由題知:

3)答:

連接

連接

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-5x軸交于A(-1,0),B(5,0)兩點(diǎn),與y軸交與點(diǎn)C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)Dy軸上的點(diǎn),且以B、C、D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);

(3)如圖2,CE//x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC、CE分別相交于點(diǎn)FG,試探求當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.

1)求證:四邊形是菱形;

2)若,,求矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,DAB上一點(diǎn),DEAC于點(diǎn)E,FAD的中點(diǎn),FGBC于點(diǎn)G,與DE交于點(diǎn)H,若FGAF,AG平分∠CAB,連接GE,GD

1)求證:ECG≌△GHD

2)小亮同學(xué)經(jīng)過探究發(fā)現(xiàn):ADAC+EC.請(qǐng)你幫助小亮同學(xué)證明這一結(jié)論.

3)若∠B30°,判定四邊形AEGF是否為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是 事件;(可能,必然,不可能)

(2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個(gè)值;若不存在,請(qǐng)說明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙OBC與點(diǎn)D,過點(diǎn)D作⊙O的切線EF,交AC于點(diǎn)E,交AB的延長線于點(diǎn)F

求證:(1BDCD;

2)∠BAC2EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長線分別交于點(diǎn)E、F

(1)若E=F時(shí),求證:ADC=ABC;

(2)若E=F=42°時(shí),求A的度數(shù);

(3)若E=α,F=β,且α≠β請(qǐng)你用含有α、β的代數(shù)式表示A的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案