【題目】已知:如圖, AB⊥CD于點(diǎn)O,∠1=∠2,OE平分∠BOF,∠EOB=55°,求∠GOF和∠DOG的度數(shù).
【答案】90°;70°
【解析】
先由垂直的定義可得∠1+∠AOF=90°,再由∠1=∠2,即可求得∠GOF=90°,根據(jù)角平分線的定義可得∠BOF=2∠EOB=110°,根據(jù)平角定義可求得∠AOF=70°,繼而可得∠1 =20°,再根據(jù)平角定義即可求得∠DOG的度數(shù).
∵AB⊥CD,
∴∠AOC=90°,即∠1+∠AOF=90°,
又∵∠1=∠2,
∴∠2+∠AOF=90°,
即∠GOF=90°,
∵OE平分∠BOF,∠EOB=55°,
∴∠BOF=2∠EOB=110°,
∴∠AOF=180°-∠BOF=70°,
∴∠1=∠AOC-∠AOF=20°,
∴∠DOG=180°-∠1-∠GOF=70°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場(chǎng) | 乙林場(chǎng) | ||
購樹苗數(shù)量 | 銷售單價(jià) | 購樹苗數(shù)量 | 銷售單價(jià) |
不超過1000棵時(shí) | 4元/棵 | 不超過2000棵時(shí) | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設(shè)購買白楊樹苗x棵,到兩家林場(chǎng)購買所需費(fèi)用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場(chǎng)購買所需費(fèi)用為 元,若都在乙林場(chǎng)購買所需費(fèi)用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)A(1,2)和B(2,n),
(1)以原點(diǎn)O為位似中心畫出△A1B1O,使=;
(2)在y軸上是否存在點(diǎn)P,使得PA+PB的值最?若存在,求出P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ΔABC和ΔDCE均是等邊三角形,點(diǎn)B,C,E在同一條直線上,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接FG,則下列結(jié)論: ①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正確的結(jié)論為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電超市經(jīng)營甲、乙兩種品牌的洗衣機(jī).經(jīng)投標(biāo)發(fā)現(xiàn),1臺(tái)甲品牌冼衣機(jī)進(jìn)價(jià)比1臺(tái)乙品牌洗衣機(jī)進(jìn)價(jià)貴500元;購進(jìn)2臺(tái)甲品牌洗衣機(jī)和3臺(tái)乙品牌洗衣機(jī)共需進(jìn)貨款13500元.
(1)購進(jìn)1臺(tái)甲品牌洗衣機(jī)和1臺(tái)乙品牌洗衣機(jī)進(jìn)價(jià)各需要多少元?
(2)超市根據(jù)經(jīng)營實(shí)際情況,需購進(jìn)甲、乙兩種品牌的洗衣機(jī)總數(shù)為50臺(tái),購進(jìn)甲、乙兩種品牌的洗衣機(jī)的總費(fèi)用不超過145250元.
①請(qǐng)問甲品牌洗衣機(jī)最多購進(jìn)多少臺(tái)?
②超市從經(jīng)營實(shí)際需要出發(fā),其中甲品牌洗衣機(jī)購進(jìn)的臺(tái)數(shù)不少于乙晶牌冼衣機(jī)臺(tái)數(shù)的3倍,則該超市共有幾種購進(jìn)方案?試寫出所有的購進(jìn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點(diǎn)E,點(diǎn)F為AC延長線上的一點(diǎn),連接DF.
(1)求∠CBE的度數(shù);
(2)若∠F=25°,求證:BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元,若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨(dú)完成需12天,乙單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用最少?
(3)若裝修完后,商店每天可贏利200元,你認(rèn)為如何安排施工更有利于商店?請(qǐng)你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線,交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,D是△ABC邊BC上一點(diǎn),且CD=AB,∠BDA=∠BAD,AE是△ABD的中線.求證:AC=2AE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com