【題目】如圖①,AE是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),連結(jié)AC并延長AC至點(diǎn)D,使CD=CA,連結(jié)ED交⊙O于點(diǎn)B.
(1)求證:點(diǎn)C是劣弧 的中點(diǎn);
(2)如圖②,連結(jié)EC,若AE=2AC=4,求陰影部分的面積.

【答案】
(1)解:連接CE,

∵AE是⊙O的直徑,

∴CE⊥AD,

∵AC=CD,

∴AE=ED,

∴∠AEC=∠DEC,

;

∴點(diǎn)C是劣弧 的中點(diǎn);


(2)連接BC,OB,OC,

∵AE=2AC=4,

∴∠AEC=30°,AE=AD,

∴∠AED=60°,

∴△AED是等邊三角形,

∴∠A=60°,

= ,

= =

∴AE∥BC,∠BOC=60°,

∴SOBC=SEBC

∴S陰影=S扇形= = π.


【解析】(1)連接CE,由AE是⊙O的直徑,得到CE⊥AD,根據(jù)等腰三角形的性質(zhì)得到∠AEC=∠DEC,于是得到結(jié)論;(2)連接BC,OB,OC,由已知條件得到△AED是等邊三角形,得到∠A=60°,推出AE∥BC,∠BOC=60°,于是得到結(jié)論.
【考點(diǎn)精析】掌握?qǐng)A周角定理和扇形面積計(jì)算公式是解答本題的根本,需要知道頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義函數(shù):在y關(guān)于x的函數(shù)中,若0≤x≤1時(shí),函數(shù)y有最大值和最小值,分別記ymax和ymin , 且滿足 ,則我們稱函數(shù)y為“三角形函數(shù)”.
(1)若函數(shù)y=x+a為“三角形函數(shù)”,求a的取值范圍;
(2)判斷函數(shù)y=x2 x+1是否為“三角形函數(shù)”,并說明理由;
(3)已知函數(shù)y=x2﹣2mx+1,若對(duì)于0≤x≤1上的任意三個(gè)實(shí)數(shù)a,b,c所對(duì)應(yīng)的三個(gè)函數(shù)值都能構(gòu)成一個(gè)三角形的三邊長,則求滿足條件的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.

1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AEEF所在的兩個(gè)三角形全等,但ABEECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證AEMEFC就行了,隨即小強(qiáng)寫出了如下的證明過程:

證明:如圖1,取AB的中點(diǎn)M,連接EM

∵∠AEF=90°

∴∠FEC+AEB=90°

又∵∠EAM+AEB=90°

∴∠EAM=FEC

∵點(diǎn)E,M分別為正方形的邊BCAB的中點(diǎn)

AM=EC

又可知BME是等腰直角三角形

∴∠AME=135°

又∵CF是正方形外角的平分線

∴∠ECF=135°

∴△AEM≌△EFCASA

AE=EF

2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.

3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長線上的一點(diǎn)其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過程給小強(qiáng)看,若不成立請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,直線y=﹣x+4交坐標(biāo)軸于A、B兩點(diǎn),過點(diǎn)C(﹣4,0)作CD⊥AB于D,交y軸于點(diǎn)E.

(1)求證:△COE≌△BOA;

(2)如圖2,點(diǎn)M是線段CE上一動(dòng)點(diǎn)(不與點(diǎn)C、E重合),ON⊥OM交AB于點(diǎn)N,連接MN.

①判斷△OMN的形狀.并證明;

②當(dāng)△OCM和△OAN面積相等時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn),過點(diǎn)AAMy軸于點(diǎn)M,過點(diǎn)BBNx軸于點(diǎn)N,連結(jié)MN、OA、OB.下列結(jié)論:

;四邊形與四邊形MNCA的周長相等;.其中正確的個(gè)數(shù)是( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB邊上的兩個(gè)動(dòng)點(diǎn),滿足∠DCE=45°.
(1)如圖②,把△ADC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△BKC,連結(jié)EK.
①求證:△DCE≌△KCE.
②求證:DE2=AD2+BE2
③思考與探究:當(dāng)點(diǎn)D從點(diǎn)A向AB的中點(diǎn)運(yùn)動(dòng)的過程中,請(qǐng)嘗試寫出DE長度的變化趨勢(shì) ;并直接寫出DE長度的最大值或最小值 (標(biāo)明最大值或最小值).
(2)如圖③,若△CDE的外接圓⊙O分別交AC,BC于點(diǎn)F、G,求證:CF:CG=BE:AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC中,AB=AC,BAC=120°,ADBC于點(diǎn)D,點(diǎn)PBA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.

(1)求∠APO+∠DCO的度數(shù);

(2)求證:點(diǎn)POC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)下面四個(gè)圖分別由六個(gè)相同的正方形拼接而成,其中不能折(從A、B、C、D選擇)的是_________.

(2)用斜二側(cè)畫法補(bǔ)畫圖1的圖形,使之成為長方體的直觀圖(虛線表示被遮住的線段;只要在已有圖形基礎(chǔ)上畫出長方體,不必寫畫法步驟).

(3)在這一長方體中,從同一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積之比是5:7:2,其中最大的比最小的面積大60cm2,求這個(gè)長方體的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案