二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的部分對應(yīng)值如下表:
x-112
y-1--2-
下列結(jié)論:①a<0;②c<0;③二次函數(shù)與x軸有兩個(gè)交點(diǎn),且分別位于y軸的兩側(cè);④二次函數(shù)與x軸有兩個(gè)交點(diǎn),且位于y軸的同側(cè).其中正確的結(jié)論為( )
A.②③
B.②④
C.①③
D.①④
【答案】分析:先根據(jù)x=0時(shí)y=-;x=1時(shí)y=-2;x=-1時(shí),y=-1求出a、b、c的值,進(jìn)而得出二次函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì)對各小題進(jìn)行逐一判斷即可.
解答:解:∵x=0時(shí)y=-;x=1時(shí)y=-2;x=-1時(shí),y=-1,
,解得
∴該二次函數(shù)的解析式為:y=x2-x-,
∵a=>0,c=-<0,
∴①錯(cuò)誤;②正確;
∵△=b2-4ac=-4××(-)=2>0,
∴二次函數(shù)與x軸有兩個(gè)交點(diǎn),
設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,
∵x1•x2=-7<0,
∴兩個(gè)交點(diǎn)中,一個(gè)位于y軸的左側(cè),另外一個(gè)位于y軸的右側(cè),即分別位于y軸的兩側(cè),
∴③正確,④錯(cuò)誤;
故選A.
點(diǎn)評(píng):本題考查的是二次函數(shù)的性質(zhì),先根據(jù)題意求出二次函數(shù)的解析式是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊答案