若關(guān)于x的一元二次方程kx2﹣2x+1=0有實(shí)數(shù)根,則k的取值范圍是 


k≤1且k≠0 

【考點(diǎn)】根的判別式.

【分析】根據(jù)方程根的情況可以判定其根的判別式的取值范圍,進(jìn)而可以得到關(guān)于k的不等式,解得即可,同時(shí)還應(yīng)注意二次項(xiàng)系數(shù)不能為0.

【解答】解:∵關(guān)于x的一元二次方程kx2﹣2x+1=0有實(shí)數(shù)根,

∴△=b2﹣4ac≥0,

即:4﹣4k≥0,

解得:k≤1,

∵關(guān)于x的一元二次方程kx2﹣2x+1=0中k≠0,

故答案為:k≤1且k≠0.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達(dá)式;

(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;

(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某組數(shù)據(jù)的方差計(jì)算公式為S2=[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],則該組數(shù)據(jù)的樣本容量是      ,該組數(shù)據(jù)的平均數(shù)是      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知,如圖,O為正方形對(duì)角線的交點(diǎn),BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.

(1)求證:△BCE≌△DCF.

(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.

(3)若DF2=8﹣4,求正方形ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


△ABC的三邊長(zhǎng)分別是1、k、3,則化簡(jiǎn)的結(jié)果為(  )

A.﹣5  B.19﹣4k   C.13   D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,直線y=x+1與拋物線y=ax2+bx﹣3交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B點(diǎn)重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.

(1)求a、b及sin∠ACP的值;

(2)設(shè)點(diǎn)P的橫坐標(biāo)為m;

①用含有m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;

②連接PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,使這兩個(gè)三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列說法正確的是( 。

A.了解某班同學(xué)的身高情況適合用全面調(diào)查

B.?dāng)?shù)據(jù)2、3、4、2、3的眾數(shù)是2

C.?dāng)?shù)據(jù)4、5、5、6、0的平均數(shù)是5

D.甲、乙兩組數(shù)據(jù)的平均數(shù)相同,方差分別是S2=3.2,S2=2.9,則甲組數(shù)據(jù)更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


函數(shù)y=的自變量取值范圍是 

查看答案和解析>>

同步練習(xí)冊(cè)答案