(2012•揚州)如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù)
2
≈1.41,
3
≈1.73)
分析:作AD⊥BC,垂足為D,設CD=x,利用解直角三角形的知識,可得出AD,繼而可得出BD,結(jié)合題意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.
解答:解:作AD⊥BC,垂足為D,

由題意得,∠ACD=45°,∠ABD=30°,
設CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD=
3
x,
又∵BC=20,即x+
3
x=20,
解得:x=10(
3
-1)

∴AC=
2
x≈10.3(海里).
答:A、C之間的距離為10.3海里.
點評:此題考查了解直角三角形的應用,解答本題的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,將實際問題轉(zhuǎn)化為數(shù)學模型進行求解,難度一般.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•揚州)如圖,PA、PB是⊙O的切線,切點分別為A、B兩點,點C在⊙O上,如果∠ACB=70°,那么∠P的度數(shù)是
40°
40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•揚州)如圖1,在平面直角坐標系中,矩形OABC的頂點O在坐標原點,頂點A、C分別在x軸、y軸的正半軸上,且OA=2,OC=1,矩形對角線AC、OB相交于E,過點E的直線與邊OA、BC分別相交于點G、H.
(1)①直接寫出點E的坐標:
(1,
1
2
(1,
1
2

②求證:AG=CH.
(2)如圖2,以O為圓心,OC為半徑的圓弧交OA與D,若直線GH與弧CD所在的圓相切于矩形內(nèi)一點F,求直線GH的函數(shù)關(guān)系式.
(3)在(2)的結(jié)論下,梯形ABHG的內(nèi)部有一點P,當⊙P與HG、GA、AB都相切時,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•揚州)如圖,在四邊形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足為E.求證:BE=DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•揚州)如圖,將矩形ABCD沿CE折疊,點B恰好落在邊AD的F處,如果
AB
BC
=
2
3
,那么tan∠DCF的值是
5
2
5
2

查看答案和解析>>

同步練習冊答案