【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B(2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.

【答案】解:∵點(diǎn)B(2,n)、P(3n﹣4,1)在反比例函數(shù)y= (x>0)的圖象上, ∴
解得:m=8,n=4.
∴反比例函數(shù)的表達(dá)式為y=
∵m=8,n=4,
∴點(diǎn)B(2,4),(8,1).
過點(diǎn)P作PD⊥BC,垂足為D,并延長交AB與點(diǎn)P′.

在△BDP和△BDP′中,

∴△BDP≌△BDP′.
∴DP′=DP=6.
∴點(diǎn)P′(﹣4,1).
將點(diǎn)P′(﹣4,1),B(2,4)代入直線的解析式得: ,
解得:
∴一次函數(shù)的表達(dá)式為y= x+3
【解析】將點(diǎn)B(2,n)、P(3n﹣4,1)代入反比例函數(shù)的解析式可求得m、n的值,從而求得反比例函數(shù)的解析式以及點(diǎn)B和點(diǎn)P的坐標(biāo),過點(diǎn)P作PD⊥BC,垂足為D,并延長交AB與點(diǎn)P′.接下來證明△BDP≌△BDP′,從而得到點(diǎn)P′的坐標(biāo),最后將點(diǎn)P′和點(diǎn)B的坐標(biāo)代入一次函數(shù)的解析式即可求得一次函數(shù)的表達(dá)式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過點(diǎn)C CF⊥AE,垂足為點(diǎn) F,過點(diǎn) B BD⊥BC CF 的延長線于點(diǎn) D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點(diǎn)A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點(diǎn)E,F(xiàn),過點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連接CD,則△ACD的周長為(
A.13
B.17
C.18
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,P是BC邊上一動(dòng)點(diǎn)(不含B,C兩點(diǎn)),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處,在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.

(1)發(fā)現(xiàn):
△CMP和△BPA是否相似,若相似給出證明,若不相似說明理由;
(2)思考:
線段AM是否存在最小值?若存在求出這個(gè)最小值,若不存在,說明理由;
(3)探究:
當(dāng)△ABP≌△ADN時(shí),求BP的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車速度為200千米/小時(shí),行駛180千米后,中途要?啃熘10分鐘,若動(dòng)車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動(dòng)車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2﹣4sinαx+2=0有兩個(gè)等根,則銳角α的度數(shù)是(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個(gè)圓規(guī)兩腳均為12cm,最大張角150°,你能否畫出一個(gè)半徑為20cm的圓?請(qǐng)借助圖2說明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

同步練習(xí)冊答案