【題目】如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.

(1)點B的坐標為;用含t的式子表示點P的坐標為;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6),并求當t為何值時,S有最大值?
(3)試探究:在上述運動過程中,是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC的 ?若存在,求出點T的坐標;若不存在,請說明理由.

【答案】
(1)(6,4);(t, t)
(2)

解:∵SOMP= ×OM× t,

∴S= ×(6﹣t)× t=﹣ t2+2t=﹣ (t﹣3)2+3(0<t<6).

∴當t=3時,S有最大值.


(3)

解:存在.理由如下:

由(2)得,當S有最大值時,點M、N的坐標分別為:M(3,0),N(3,4),

則直線ON的函數(shù)關(guān)系式為:y= x.

設(shè)點T的坐標為(0,b),則直線MT的函數(shù)關(guān)系式為:y=﹣ x+b,

解方程組 ,

∴直線ON與MT的交點R的坐標為( ),

∵SOCN= ×4×3=6,

∴SORT= SOCN=2,

①當點T在點O、C之間時,分割出的三角形是△OR1T1,

如圖2所示,作R1D1⊥y軸,D1為垂足,則SOR1T1= RD1OT= b=2.

∴3b2﹣4b﹣16=0,

解得:b= (負值舍去).

∴b= ,

此時點T1的坐標為(0, ).

②當點T在OC的延長線上時,分割出的三角形是△R2NE,如圖,設(shè)MT交CN于點E,

由①得點E的橫坐標為 ,作R2D2⊥CN交CN于點D2,則

SR2NE= ENR2D2= (3﹣ )(4﹣ = =2.

∴b2+4b﹣48=0,

解得:b=±2 ﹣2(負值舍去).

∴b=2 ﹣2.

∴此時點T2的坐標為(0,2 ).

綜上所述,在y軸上存在點T1(0, ),T2(0,2 ﹣2)符合條件.


【解析】解:(1)延長NP交OA于H,如圖1所示:
∵矩形OABC,
∴BC∥OA,∠OCB=90°,
∵PN⊥BC,
∴NH∥OC,
∴四邊形CNHO是平行四邊形,
∴OH=CN,
∵OA=6,AB=4,
∴點B的坐標為(6,4);
由圖可得,點P的橫坐標=0H=CN=t,縱坐標=4﹣NP,
∵NP⊥BC,
∴NP∥OC,
∴NP:OC=BN:CB,
即NP:4=(6﹣t):6,
∴NP=4﹣ t,
∴點P的縱坐標=4﹣NP= t,
則點P的坐標為(t, t);
所以答案是:(6,4);(t, t);
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的最值和平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,點D為AB下方⊙O上一點,點C為弧ABD中點,連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點M是AC的中點,以AB為直徑做⊙O分別交AC,BM于點D、E.
(1)求證:∠MDE=∠MED;
(2)填空: ①若AB=6,當DM=2AD時,DE=;
②連接OD、OE,當∠C的度數(shù)為時,四邊形ODME是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形ABCD中,∠B=60°,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,角的兩邊所在的兩直線分別交線段AB、AD于點E、F(不包括線段的端點).

(1)問題發(fā)現(xiàn):
如圖1,若平行四邊形ABCD為菱形,
試猜想線段AE、AF、AC之間的數(shù)量關(guān)系 ,請證明你的猜想.

(2)類比探究:
如圖2,若AB:AD=1:2,過點C作CH⊥AD于點H,求AE:FH的比值;
(3)拓展延伸:
如圖3,若AB:AD=1:4,請直接寫出(AE+4AF):AC的比值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:1級質(zhì)量為優(yōu);2級質(zhì)量為良;3級質(zhì)量為輕度污染;4級質(zhì)量為中度污染;5級質(zhì)量為重度污染.某城市隨機抽取了一年中某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測結(jié)果進行統(tǒng)計;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為°;
(4)如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據(jù)目前的統(tǒng)計,請你估計該年該城市只有多少天適宜戶外活動.(一年天數(shù)按365天計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: +(tan60﹣1)0+| ﹣1|﹣2cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角尺如圖放置,已知AE∥BC,則∠AFD的度數(shù)是(
A.45°
B.50°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于坐標平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).

(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏家廚房一墻角處有一自來水管,裝修時為了美觀,準備用木板從AB處將水管密封起來,互相垂直的兩墻面與水管分別相切于D,E兩點,經(jīng)測量AD=10cm,BE=15cm, 則該自來水管的半徑為( )cm.

A.5
B.10
C.6
D.8

查看答案和解析>>

同步練習(xí)冊答案