【題目】在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā),沿AB邊向點B以1cm/秒的速度移動,同時,點Q從點B出發(fā)沿BC邊向點C以2cm/秒的速度移動。如果P、Q兩點在分別到達B.C兩點后就停止移動,回答下列問題:
(1)運動開始后第幾秒時, △PBQ的面積等于8?
(2)當t=時,試判斷△DPQ的形狀。
(3)計算四邊形DPBQ的面積,并探索一個與計算結(jié)果有關的結(jié)論。
【答案】(1)經(jīng)過2秒或4秒,△PBQ的面積等于8cm2;(2)直角三角形;(3)36, 四邊形DPBQ的面積是固定值36.
【解析】
(1)設出運動所求的時間,可將BP和BQ的長表示出來,代入三角形面積公式,列出等式,可將時間求出;
(2)表示出DP 2=146.25,PQ 2=29.25,DQ 2=117,進而得到PQ 2+DQ 2=DP 2,得出答案;
(3)根據(jù)表示出四邊形面積,求出即可.
解:(1)設經(jīng)過t秒,△PBQ的面積等于8cm2則:
BP=6-t,BQ=2t,
所以S△PBQ=×(6-t)×2t=8,即t2-6t+8=0,
可得:t=2或4,即經(jīng)過2秒或4秒,△PBQ的面積等于8cm2.
(2)當t=1.5s時,
AP=1.5,BP=4.5,CQ=9,
∴DP 2=146.25,PQ 2=29.25,DQ 2=117,
∴PQ 2+DQ 2=DP 2,
∴△DPQ為直角三角形;
(3)SDPBQ=6×12-t×12-×6(12-2t),
=72-36,
=36,
∴四邊形DPBQ的面積是固定值36.
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋著名數(shù)學家秦九韶在他的著作《數(shù)書九章》中提出了“三斜求積術”,三斜即指三角形的三條邊長,可以用該方法求三角形面積.若改用現(xiàn)代數(shù)學語言表示,其形式為:設為三角形三邊,為面積,則,這是中國古代數(shù)學的瑰寶之一.而在文明古國古希臘,也有一個數(shù)學家海倫給出了求三角形面積的另一個公式,若設(周長的一半),則
(1)嘗試驗證.這兩個公式在表面上形式很不一致,請你用以為三邊構(gòu)成的三角形,分別驗證它們的面積值;
(2)問題探究.經(jīng)過驗證,你發(fā)現(xiàn)公式①和②等價嗎?若等價,請給出一個一般性推導過程(可以從或者);
(3)問題引申.三角形的面積是數(shù)學中非常重要的一個幾何度量值,很多數(shù)學家給出了不同形式的計算公式.請你證明如下這個公式:如圖,的內(nèi)切圓半徑為,三角形三邊長為,仍記,為三角形面積,則.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應滿足的關系式為( 。
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于C.
(1)求點A、B、C的坐標;
(2)若點E與點C關于拋物線的對稱軸對稱,求梯形AOCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(2x-1)2-16=0;
(2)6x2-5x-1=0;
(3)25(x+1)2=9(x-2)2 ;
(4)2y(y-1)+3=(y+1)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6,BC=8.點P從點A開始沿邊AB向點B以1cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向點C以2cm/s的速度移動.設P、Q分別從A、B同時出發(fā),運動時間為t,當其中一點先到達終點時,另一點也停止運動.解答下列問題:
(1)經(jīng)過幾秒,△PBQ的面積等于8cm2?
(2)是否存在這樣的時刻t,使線段PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是具有公共邊AB的兩個直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.
(1)如圖1,若延長DA到點E,使AE=BD,連接CD,CE.
①求證:CD=CE,CD⊥CE;
②求證:AD+BD=CD;
(2)若△ABC與△ABD位置如圖2所示,請直接寫出線段AD,BD,CD的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部,將半圓O繞點A順時針旋轉(zhuǎn)a度(0°≤a≤180°).
(1)在旋轉(zhuǎn)過程中,B′C的最小值是 ,如圖2,當半圓O的直徑落在對角線AC上時,設半圓O與AB的交點為M,則AM的長為
(2)如圖3,當半圓O與直線CD相切時,切點為N,與線段AD的交點為P,求劣弧AP的長;
(3)在旋轉(zhuǎn)過程中,當半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,請直接寫出d的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com