問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:
3.5
3.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
分析:(1)利用△ABC所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解;
(2)先作出以a、2a為直角邊的三角形的斜邊,再根據(jù)勾股定理和網(wǎng)格結(jié)構(gòu)作出
8
a、
17
a的長度,然后順次連接即可;再根據(jù)三角形所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
解答:解:(1)△ABC的面積=3×3-
1
2
×1×2-
1
2
×1×3-
1
2
×2×3
=9-1-
3
2
-3
=9-5.5
=3.5;
故答案為:3.5;

(2)△ABC如圖所示,
△ABC的面積=2a•4a-
1
2
×2a•a-
1
2
×2a•2a-
1
2
×4a•a
=8a2-a2-2a2-2a2
=3a2
點評:本題考查了勾股定理,讀懂題目信息并熟練掌握網(wǎng)格結(jié)構(gòu)和勾股定理準(zhǔn)確找出對應(yīng)點的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 
;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
5
a
、2
2
a
、
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為
m2+16n2
、
9m2+4n2
2
m2+n2
(m>0,n>0,且m≠n),試運用構(gòu)圖法求出這三角形的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂精英家教網(wǎng)點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
 

(2)畫△DEF,DE、EF、DF三邊的長分別為
2
、
8
、
10

①判斷三角形的形狀,說明理由.
②求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:“在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.”
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)絡(luò)中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),
(1)如圖所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積是
3.5
3.5

(2)如圖我們把上述求面積的方法叫做構(gòu)圖法.若△DCE三邊的長分別為
m2+16n2
、
9m2+4n2
、
4m2+4n2
(m>0,n>0,且m≠n),試運用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形BC邊上的高.
杰杰同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處).借用網(wǎng)格等知識就能計算出這個三角形BC邊上的高.
(1)請在正方形網(wǎng)格中畫出格點△ABC;
(2)求出這個三角形BC邊上的高.

查看答案和解析>>

同步練習(xí)冊答案