如圖,在三角形紙片ABC中,AC=6,∠A=30°,∠C=90°,將∠A沿DE折疊,使點A與點B重合,則折痕DE的長為( 。
A.1B.
2
C.
3
D.2

∵∠A=30°,∠C=90°,
∴∠CBD=60°.
∵將∠A沿DE折疊,使點A與點B重合,
∴∠A=∠DBE=∠EBC=30°.
∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,
∴△BCE≌△BDE.
∴CE=DE.
∵AC=6,∠A=30°,
∴BC=AC×tan30°=2
3

∵∠CBE=30°.
∴CE=2.即DE=2.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,圓被一條折線(圖中粗線)所分成的兩部分面積之差為______.(網(wǎng)格由邊長為1的正方形構成)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,放置一個如圖所示的直角三角形紙片AOB,已知OA=2,∠AOB=30度.D、E兩點同時從原點O出發(fā),D點以每秒
3
個單位長度的速度沿x軸正方向運動,E點以每秒1個單位長度的速度沿y軸正方向運動,設D、E兩點的運動時間為t秒.
(1)點A的坐標為______,點B的坐標為______;
(2)在點D、E的運動過程中,直線DE與直線OA垂直嗎?請說明理由;
(3)當時間t在什么范圍時,直線DE與線段OA有公共點?
(4)將直角三角形紙片AOB在直線DE下方的部分沿DE向上折疊,設折疊后重疊部分面積為S,請寫出S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法錯誤的是(  )
A.關于某條直線對稱的兩個圖形一定能夠完全重合
B.兩個全等的三角形一定軸對稱
C.軸對稱的圖形的對稱軸至少有一條
D.長方形是軸對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

奧林匹克運動會是世界矚目的盛會.下列圖標中,是軸對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,AB=2,則AC的長為______;如果將四邊形ACBD折疊,使點D與點C重合,EF為折痕,則線段AE與線段EC的長度的比值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點E為等邊△ABC中AC邊的中點,AD⊥BC,且AD=5,P為AD上的動點,則PE+PC的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知某個圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,-1);(1,1)→(1,-2);(1,0)→(2,-1).
(1)請連接圖案,它是一個什么漢字?
(2)作出這個圖案關于y軸的軸對稱圖形,并寫出新圖案相應各端點的坐標,你得到一個什么漢字?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的長.
小萍同學靈活運用軸對稱知識,將圖形進行翻折變換,巧妙地解答了此題.
請按照小萍的思路,探究并解答下列問題:
(1)分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,證明四邊形AEGF是正方形;
(2)設AD=x,利用勾股定理,建立關于x的方程模型,求出x的值.

查看答案和解析>>

同步練習冊答案