如圖,在梯形ABCD中,AD∥BC,E是CD的中點,連接AE并延長交BC的延長線于點F,且AB⊥AE.若AB=5,AE=6,則梯形上下底之和為         
13。
∵在梯形ABCD中,AD∥BC,∴∠F=∠DAE,∠ECF=∠D。
∵E是CD的中點,∴DE=CE。
在△ADE和△FCE中,∵∠DAE=∠F,∠D=∠ECF,DE=CE,∴△ADE≌△FCE(AAS)。
∴CF=AD,EF=AE=6!郃F=AE+EF=12。
∵AB⊥AE,∴∠BAF=90°。
∵AB=5,∴。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1) 如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,AE,BF交于點O,∠AOF=90°.求證:BE=CF.

(2) 如圖2,在正方形ABCD中,點E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°, EF=4.求GH的長.

(3) 已知點E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,求GH的長;

②如圖4,矩形ABCD由n個全等的正方形組成,求GH的長(用n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形ABCD中,對角線AC、BD相交于點O,AE⊥BD,垂足為E,∠DAE:∠BAE=3:1,則∠EAC=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個凸多邊形的每一外角都等于,那么它是     邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,,過上到點的距離分別為的點作的垂線與 相交,得到并標出一組黑色梯形,它們的面積分別為.觀察圖中的規(guī)律,第n(n為正整數(shù))個黑色梯形的面積    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,AC =" BC" = 6,E是斜邊AB上任意一點,作EF⊥AC于F,EG⊥BC于G,則矩形CFEG的周長是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,在□ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)操作發(fā)現(xiàn):
如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.

(2)類比探究:
如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(   )
A.當時,它是菱形
B.當時,它是正方形
C.當時,它是矩形
D.當時,它是菱形

查看答案和解析>>

同步練習(xí)冊答案