我國是世界上嚴(yán)重缺水的國家之一.為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.即一月用水10噸以內(nèi)(包括10噸)的用戶,每噸收水費a元;一月用水超過10噸的用戶,10噸水仍按每噸a元收費,超過10噸的部分,按每噸b元(b>a)收費.設(shè)一戶居民月用水x噸,應(yīng)收水費y元,y與x之間的函數(shù)關(guān)系如圖所示.
(1)求a的值;某戶居民上月用水8噸,應(yīng)收水費多少元;
(2)求b的值,并寫出當(dāng)x>10時,y與x之間的函數(shù)關(guān)系式;
(3)已知居民甲上月比居民乙多用水4噸,兩家共收水費46元,求他們上月分別用水多少噸?
(1)a=15÷10=1.5.(1分)
用8噸水應(yīng)收水費8×1.5=12(元).(2分)

(2)當(dāng)x>10時,有y=b(x-10)+15.(3分)
將x=20,y=35代入,得35=10b+15.b=2.(4分)
故當(dāng)x>10時,y=2x-5.(5分)

(3)∵假設(shè)甲乙用水量均不超過10噸,水費不超過46元,不符合題意;
假設(shè)乙用水10噸,則甲用水14噸,
∴水費是:1.5×10+1.5×10+2×4<46,不符合題意;
∴甲、乙兩家上月用水均超過10噸.(6分)
設(shè)甲、乙兩家上月用水分別為x噸,y噸,則甲用水的水費是(2x-5)元,乙用水的水費是(2y-5)元,
y=x-4
2y-5+2x-5=46
(8分)
解得:
x=16
y=12
(9分)
故居民甲上月用水16噸,居民乙上月用水12噸.(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)o=k著+b(k≠七)的圖象經(jīng)過A(圖,-w)和B(-2,4);
(w)求這個函數(shù)的解析式;
(2)求該函數(shù)圖象與o軸的交點C和與著軸的交點D的坐標(biāo);
(圖)求△OCD的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,運動時間為t秒(0<t≤4)
(1)求A、B兩點的坐標(biāo);
(2)用含t的代數(shù)式表示△MON的面積S1
(3)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S2
①當(dāng)2<t≤4時,試探究S2與之間的函數(shù)關(guān)系;
②在直線m的運動過程中,當(dāng)t為何值時,S2為△OAB的面積的
5
16
?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是某汽車行駛的路程S(千米)與時間t(分)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內(nèi)的平均速度是______千米/分;
(2)當(dāng)16≤t≤30時,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年入夏以來,由于持續(xù)暴雨,我市某縣遭受嚴(yán)重洪澇災(zāi)害,群眾頓失家園.該縣民政局為解決群眾困難,緊急組織1一批救災(zāi)帳篷和食品準(zhǔn)備送到災(zāi)區(qū).已知這批物資中,帳篷和食品共66多件,且?guī)づ癖仁称范?6多件.
(1)帳篷和食品各有多少件?
(7)現(xiàn)計劃租用A、B兩種貨車共16輛,一次性將這批物資送到群眾手中,已知A種貨車可裝帳蓬6多件和食品1多件,B種貨車可裝帳篷7多件和食品7多件,試通過計算幫助民政局設(shè)計幾種運輸方案?
(3)在(7)條件大,A種貨車每輛需付運費8多多元,B種貨車每輛需付運費i7多元,民政局應(yīng)選擇哪種方案,才能使運輸費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰三角形的周長是20cm,設(shè)底邊長為y,腰長為x,求y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-
4
3
x+8
分別與x軸交于點A,與y軸交于點B,∠OAB的平分線交y軸于點E,點C在線段AB上,以CA為直徑的⊙D經(jīng)過點E.
(1)判斷⊙D與y軸的位置關(guān)系,并說明理由;
(2)求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=
3
4
x,點A的坐標(biāo)是(4,0),點D為x軸上位于點A右邊的某一點,點B為直線y=
3
4
x上的一點,以點A、B、D為頂點作正方形.
(1)若圖①僅看作符合條件的一種情況,求出所有符合條件的點D的坐標(biāo);
(2)在圖①中,若點P以每秒1個單位長度的速度沿直線y=
3
4
x從點O移動到點B,與此同時點Q以相同的速度從點A出發(fā)沿著折線A-B-C移動,當(dāng)點P到達(dá)點B時兩點停止運動.設(shè)點P運動時間為t,試探究:在移動過程中,△PAQ的面積關(guān)于t的函數(shù)關(guān)系式,并求最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=
2
3
x-2.
①畫出該函數(shù)圖象;
②圖象與x軸的交點A的坐標(biāo)是______,與y軸的交點B的坐標(biāo)是______;
③從圖象上看,當(dāng)x______時,y=-2;當(dāng)x______時,y>-2;當(dāng)x______時,y<-2;
④計算該圖象與兩坐標(biāo)軸所圍成的△AB0的面積S.

查看答案和解析>>

同步練習(xí)冊答案