【題目】如圖,在菱形ABCD中,AC交BD于P,E為BC上一點(diǎn),AE交BD于F,若AB=AE,,則下列結(jié)論:①AF=AP;②AE=FD;③BE=AF.正確的是______(填序號(hào)).
【答案】②③
【解析】
根據(jù)菱形的性質(zhì)可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,從而判斷①;設(shè)∠BAE=x,然后根據(jù)等腰三角形兩底角相等表示出∠ABE,再根據(jù)菱形的鄰角互補(bǔ)求出∠ABE,根據(jù)三角形內(nèi)角和定理列出方程,求出x的值,求出∠BFE和∠BE的度數(shù),從而判斷②③.
解:在菱形ABCD中,AC⊥BD,
∴在Rt△AFP中,AF一定大于AP,故①錯(cuò)誤;
∵四邊形ABCD是菱形,
∴AD∥BC,
∴∠ABE+∠BAE+∠EAD=180°,
設(shè)∠BAE=x°,
則∠EAD=2x°,∠ABE=180°-x°-2x°,
∵AB=AE,∠BAE=x°,
∴∠ABE=∠AEB=180°-x°-2x°,
由三角形內(nèi)角和定理得:x+180-x-2x+180-x-2x=180,
解得:x=36,
即∠BAE=36°,
∠BAE=180°-36°-2×36°=70°,
∵四邊形ABCD是菱形,
∴∠BAD=∠CBD=∠ABE=36°,
∴∠BFE=∠ABD+∠BAE=36°+36°=72°,
∴∠BEF=180°-36°-72°=72°,
∴BE=BF=AF.故③正確
∵∠AFD=∠BFE=72°,∠EAD=2x°=72°
∴∠AFD=∠EAD
∴AD=FD
又∵AD=AB=AE
∴AE=FD,故②正確
∴正確的有②③
故答案為:②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)a,b在數(shù)軸上的位置如圖所示.
(1)在數(shù)軸上標(biāo)出﹣a,﹣b的位置,并比較a,b,﹣a,﹣b的大。
(2)化簡(jiǎn)|a+b|+|a﹣b|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著電子商務(wù)的快速發(fā)展,電商包裹件總量占當(dāng)年快遞件總量的比例逐年增長(zhǎng).根據(jù)某快遞公司某網(wǎng)點(diǎn)的數(shù)據(jù)統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:
快遞件總量與電商包裹件總量數(shù)據(jù)統(tǒng)計(jì)表
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
快遞件總量(萬(wàn)件) | 1.8 | 2 | 3.1 | 4.5 | 6 |
電商包裹件總量(萬(wàn)件) | 1.296 | 1.48 | 2.356 | 3.555 | 4.86 |
電商包裹件總量占當(dāng)年快遞件總量的百分比(%) | 72% | 76% | 81% |
(1)直接寫(xiě)出,的值,并在圖中畫(huà)出電商包裹件總量占快遞件總量百分比的折線(xiàn)統(tǒng)計(jì)圖;
(2)若2019年該網(wǎng)點(diǎn)快遞件總量預(yù)計(jì)達(dá)到7萬(wàn)件,請(qǐng)根據(jù)圖表信息,估計(jì)2019年電商包裹件總量約為多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,BD是∠ABC的平分線(xiàn),AB=BC,點(diǎn)P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.
(1)求證:PM=PN;
(2)聯(lián)結(jié)MN,求證:PD是MN的垂直平分線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y1=2x-3與雙曲線(xiàn)在第一象限交于點(diǎn)A,與x軸交于點(diǎn)B,過(guò)點(diǎn)A作AC⊥x軸,垂足為C,已知∠BAC=∠AOC.
(1)求A,B兩點(diǎn)的坐標(biāo)及k的值;
(2)請(qǐng)直接寫(xiě)出當(dāng)y2>y1>0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:用2輛A型車(chē)和1輛B型車(chē)裝滿(mǎn)貨物一次可運(yùn)貨10t;用1輛A型車(chē)和2輛B型車(chē)裝滿(mǎn)貨物一次可運(yùn)貨11t.某物流公司現(xiàn)有35t貨物,計(jì)劃同時(shí)租用A型車(chē)a輛,B型車(chē)b輛,一次運(yùn)完,且恰好每輛車(chē)都裝滿(mǎn)貨物.根據(jù)以上信息,解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)都裝滿(mǎn)貨物一次可分別運(yùn)貨多少?lài)崳?/span>
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案;
(3)若A型車(chē)每輛需租金100元/次,B型車(chē)每輛需租金120元/次.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租車(chē)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長(zhǎng)為4的正方形,B、D分別在軸負(fù)半軸、軸正半軸上,點(diǎn)E是軸的一個(gè)動(dòng)點(diǎn),連接CE,以CE為邊,在直線(xiàn)CE的右側(cè)作正方形CEFG.
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo)為_______,點(diǎn)G的坐標(biāo)為_______.
(2)如圖2,若點(diǎn)E在線(xiàn)段OD上,且OE=1,求正方形CEFG的面積.
(3)當(dāng)點(diǎn)E在軸上移動(dòng)時(shí),點(diǎn)F是否在某條直線(xiàn)上運(yùn)動(dòng)?如果是,請(qǐng)求出相應(yīng)直線(xiàn)的表達(dá)式;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為矩形ABCD對(duì)角線(xiàn)的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說(shuō)明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為﹣1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為8?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由;
(3)現(xiàn)在點(diǎn)A、點(diǎn)B分別以2個(gè)單位長(zhǎng)度/秒和0.5個(gè)單位長(zhǎng)度/秒的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)P以6個(gè)單位長(zhǎng)度/秒的速度同時(shí)從O點(diǎn)向左運(yùn)動(dòng).當(dāng)點(diǎn)A與點(diǎn)B之間的距離為3個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P所對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com