已知在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.
(1)求證:FG∥BC
(2)請你在圖中找出一對相似三角形,并說明相似的理由.
解:(1)證明:∵CF⊥AB,ED⊥AB
∴∠AFC=∠ADE=90°
∴CF∥DE
∴∠1=∠BCF
又∵∠1=∠2
∴∠BCF=∠2
∴FG∥BC
(2)答案不惟一,只要說到其中一對即可.
如①△BDE∽△BFC;②△AFG∽△ABC;
理由略.
(1)由CF⊥AB,ED⊥AB,根據(jù)在同一平面內,垂直于同一直線的兩條直線平行,可得CF∥DE;根據(jù)兩直線平行,同位角相等,即可得∠1=∠2,即可根據(jù)內錯角相等,判定兩直線平行;
(2)再根據(jù)相似三角形的判定方法:平行于三角形一邊的直線與三角形另兩邊或另兩邊的延長線所構成的三角形相似,即可求得相似三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在正方形ABCD中,對角線AC,BD交于點O,點P在線段BC上(不含點B),∠BPE=∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1) 當點P與點C重合時(如圖①).求證:△BOG≌△POE;(4分)
(2)通過觀察、測量、猜想:=   ,并結合圖②證明你的猜想;(5分)
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中有兩點,,以原點為位似中心,相似比為1∶3.把線段縮小,則過點對應點的反比例函數(shù)的解析式為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,Rt△ABC∽Rt△DEF,∠A=35°,則∠E的度數(shù)為      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知D、E分別為△ABC的AB、AC邊上兩點,且DE//BC,AD=1,BD=2,則S△ADE:S△ABC=     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

大江的一側有A、B兩個工廠,它們有垂直于江邊的小路,長度分別為3千米和1千米,設兩條小路相距4千米,現(xiàn)在要在江邊建立一個抽水站,把水送到A、B兩廠去,欲使供水管路最短,抽水站應建在哪里?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,陽光通過窗口照到室內,在地面上留下1.6m寬的亮區(qū)DE,已知亮區(qū)一邊到窗下的墻腳距離CE=3.6m,窗高AB=1.2m,那么窗口底邊離地面的高度BC=          m .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標。
(2)求當t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標.
(3)當t=2時,在坐標平面內,是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小康利用下面的方法測出月球與地球的距離:如圖所示,在月圓時,把一枚五分的硬幣(直徑約為2.4cm)放在離眼睛點O約2.6米的AB處,正好把月亮遮住. 已知月球的直徑約為3500km,那么月球與地球的距離約為____________________(結果保留兩個有效數(shù)字).  
                

查看答案和解析>>

同步練習冊答案