【題目】(本題滿分12分)如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為60米,寬為40米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.
(1)花圃的面積為 (用含的式子表示);
(2)如果通道所占面積是整個(gè)長(zhǎng)方形空地面積的,求出此時(shí)通道的寬;
(3)已知某園林公司修建通道、花圃的造價(jià)(元)、(元)與修建面積 之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時(shí),修建的通道和花圃的總造價(jià)為105920元
【答案】(1)(1);(2)5米;(3)通道寬為2米時(shí),修建的通道和花圃的總造價(jià)為105920元.
【解析】試題分析:(1)用含a的式子先表示出花圃的長(zhǎng)和寬后利用其矩形面積公式列出式子即可;
(2)根據(jù)通道所占面積是整個(gè)長(zhǎng)方形空地面積的,列出方程進(jìn)行計(jì)算即可;
(3)根據(jù)圖象,設(shè)出通道和花圃的解析式,用待定系數(shù)法求解,再根據(jù)修建的通道和花圃的總造價(jià)為105920元列出關(guān)于a的方程,通過解方程求得a的值.
試題解析:(1)由圖可知,花圃的面積為(40﹣2a)(60﹣2a)=4a2﹣200a+2400.
(2)當(dāng)通道所占面積是整個(gè)長(zhǎng)方形空地面積的,即花圃所占面積是整個(gè)長(zhǎng)方形空地面積的,則4a2﹣200a+2400=60×40×,
解方程得:a1=5,a2=45(不符合題意,舍去)
即此時(shí)通道寬為5米;
(3)當(dāng)a=10時(shí),花圃面積為(60﹣2×10)×(40﹣2×10)=800(平方米)
即此時(shí)花圃面積最少為800(平方米).
根據(jù)圖象可設(shè)y1=mx,y2=kx+b,
將點(diǎn)(1200,48000),(800,48000),(1200,62000)代入,則有
1200m=48000,解得:m=40
∴y1=40x且有,
解得: ,
∴y2=35x+20000.
∵花圃面積為:(40﹣2a)(60﹣2a)=4a2﹣200a+2400,
∴通道面積為:2400﹣(4a2﹣200a+2400)=﹣4a2+200a
∴35(4a2﹣200a+2400)+20000+40(﹣4a2+200a)=105920
解得a1=2,a2=48(舍去).
答:通道寬為2米時(shí),修建的通道和花圃的總造價(jià)為105920元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(x,y)的坐標(biāo)滿足xy=0,則點(diǎn)P的位置是( )
A.在x軸上
B.在y軸上
C.是坐標(biāo)原點(diǎn)
D.在x軸上或在y軸上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知非等腰三角形的兩邊長(zhǎng)分別是2 cm和9 cm,如果第三邊的長(zhǎng)為整數(shù),那么第三邊的長(zhǎng)為( )
A. 8 cm或10 cm B. 8 cm或9 cm C. 8 cm D. 10 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(a﹣1)x+a﹣2,其中a是常數(shù).
(1)求證:不論a為何值,該二次函數(shù)的圖象與x軸一定有公共點(diǎn);
(2)當(dāng)a=4時(shí),該二次函數(shù)的圖象頂點(diǎn)為A,與x軸交于B,D兩點(diǎn),與y軸交于C點(diǎn),求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)人最早使用負(fù)數(shù),可追溯到兩千多年前的秦漢時(shí)期,﹣0.5的相反數(shù)是( )
A.0.5
B.±0.5
C.﹣0.5
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長(zhǎng)為,另兩邊的長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽(yáng).(取1.73)
(1)求樓房的高度約為多少米?
(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽(yáng)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車同時(shí)分別從A、B兩城沿同一條高速公路勻速駛向C城.已知A、C兩城的距離為360km,B、C兩城的距離為320km,甲車比乙車的速度快10km/h,結(jié)果兩輛車同時(shí)到達(dá)C城.設(shè)乙車的速度為xkm/h.
(1)根據(jù)題意填寫下表:
行駛的路程(km) | 速度(km/h) | 所需時(shí)間(h) | |
甲車 | 360 | ||
乙車 | 320 | x |
(2)求甲、乙兩車的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com