【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;(圖1)
(2)求∠FAE的度數(shù);(圖1)
(3)如圖2,延長CF到G點(diǎn),使BF=GF,連接AG.求證:CD=CG;并猜想CD與2BF+DE的關(guān)系.
【答案】(1)證明見解析;(2)∠FAE=135°;(3)證明見解析.
【解析】
(1)根據(jù)題意和題目中的條件可以找出△ABC≌△ADE的條件;
(2)根據(jù)(1)中的結(jié)論和等腰直角三角形的定義可以得到∠FAE的度數(shù);
(3)根據(jù)題意和三角形全等的知識,作出合適的輔助線即可證明結(jié)論成立.
(1)證明:∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,
∴∠BAC=∠DAE,
在△BAC和△DAE中,
,
∴△BAC≌△DAE(SAS);
(2)解:∵∠CAE=90°,AC=AE,
∴∠E=45°,
由(1)知△BAC≌△DAE,
∴∠BCA=∠E=45°,
∵AF⊥BC,
∴∠CFA=90°,
∴∠CAF=45°,
∴∠FAE=∠FAC+∠CAE=45°+90°=135°;
(3)證明:∵AF⊥BG,
∴∠AFG=∠AFB=90°,
在△AFB和△AFG中,
,
∴△AFB≌△AFG(SAS),
∴AB=AG,∠ABF=∠G,
∵△BAC≌△DAE,
∴AB=AD,∠CBA=∠EDA,CB=ED,
∴AG=AD,∠ABF=∠CDA,
∴∠G=∠CDA,
在△CGA和△CDA中,
,
∴△CGA≌△CDA,
∴CG=CD,
∵CG=CB+BF+FG=CB+2BF=DE+2BF,
∴CD=2BF+DE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(3,﹣2),線段AB的位置如圖所示,其中點(diǎn)A的坐標(biāo)為(7,3),點(diǎn)B的坐標(biāo)為(1,4).
(1)將線段AB平移可以得到線段MN,其中點(diǎn)A的對應(yīng)點(diǎn)為M(3,﹣2),點(diǎn)B的對應(yīng)點(diǎn)為N,則點(diǎn)N的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)C的坐標(biāo)為(4,0),請在圖中描出點(diǎn)N并順次連接BC,CM,MN,NB,然后求出四邊形BCMN的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.
(1)求證:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請你將圖2的統(tǒng)計圖補(bǔ)充完整;
(3)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學(xué)校成績較好.
(4)如果該教育局要組織8人的代表隊參加市級團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件中,不能證明△ABC≌△DCB是 ( 。
A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCB
C. DB=AC,∠DBC=∠ACB D. DC=AB,∠DBC=∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點(diǎn)E為AD的中點(diǎn).若點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動,同時,點(diǎn)Q在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動.
(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并直接寫出此時線段PE和線段PQ的位置關(guān)系;
(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,運(yùn)動時間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使△AEP與△BPQ全等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com