【題目】已知△ABC是邊長(zhǎng)為的等邊三角形.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θθ180°),得到△ADEBDEC所在直線相交于點(diǎn)O

1)如圖a,當(dāng)θ=20°時(shí),判斷△ABD與△ACE是否全等?并說(shuō)明理由;

2)當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí)(60°θ120°),求∠BOE的度數(shù);

3)在θ60°120°的旋轉(zhuǎn)過(guò)程中,點(diǎn)O運(yùn)動(dòng)的軌跡長(zhǎng)為

【答案】(1)全等,理由見(jiàn)解析;(2)120°;(3

【解析】

1)結(jié)論:△ABD≌△ACE.根據(jù)SAS證明即可.
2)利用全等三角形的性質(zhì)解決問(wèn)題即可.
3)如圖b中,ADAEJ.設(shè)△ABC的外接圓的圓心為K.證明∠AOC=120°,推出點(diǎn)O的運(yùn)動(dòng)軌跡是K為圓心,KC半徑的圓弧,圓心角為60°從而可以求得運(yùn)動(dòng)的軌跡.

解:(1)結(jié)論:△ABD≌△ACE

∵△ADE是由△ABC繞點(diǎn)A旋轉(zhuǎn)θ得到,∴△ABC是等邊三角形.

ABADACAE,∠BAD=∠CAE20°,

在△ABD與△ACE中,∵ABAC,∠BAD=∠CAEADAE,

∴△ABD≌△ACESAS).

2)由已知得:△ABC和△ADE是全等的等邊三角形,∴ABADACAE

∵△ADE是由△ABC繞點(diǎn)A旋轉(zhuǎn)θ得到的,∴∠BAD=∠CAEθ

∴△BAD≌△CAESAS).∴∠ADB=∠AEC

∵∠ADB+∠ABD+∠BAD180°,∴∠AEC+∠ABO+∠BAD180°

∵∠ABO+∠AEC+∠BAE+∠BOE360°,∠BAE=∠BAD+∠DAE,

∴∠DAE+∠BOE180°

又∵∠DAE60°,∴∠BOE120°

3)如圖b中,ADAEJ.設(shè)△ABC的外接圓的圓心為K

∵△ABD≌△ACE,
∴∠ODJ=AEJ,
∵∠AJE=OJD
∴∠EAJ=JOD=60°,
∴∠AOC=120°
∴點(diǎn)O的運(yùn)動(dòng)軌跡是K為圓心,KC半徑的圓弧,圓心角為60°
∴當(dāng)θ60°120°的旋轉(zhuǎn)過(guò)程中,運(yùn)動(dòng)的軌跡為=,
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面都一樣的卡片A、B、C、D,每張卡片的正面標(biāo)有字母a、b、c表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.

李老師隨機(jī)抽取一張卡片,抽到卡片B的概率等于 ;

求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,PBA延長(zhǎng)線上一點(diǎn),點(diǎn)C在⊙O上,連接PC,D為半徑OA上一點(diǎn),PDPC,連接CD并延長(zhǎng)交⊙O于點(diǎn)E,且E的中點(diǎn).

1)求證:PC是⊙O的切線;

2)若AB8,CDDE15,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,半圓O的直徑AB4,,DEABE,DFACF,連接CD,DB,OD

1)求證:△CDF≌△BDE

2)當(dāng)AD   時(shí),四邊形AODC是菱形;

3)當(dāng)AD   時(shí),四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為322日至27日間,我區(qū)每日最高氣溫與最低氣溫的變化情況.

1)最低氣溫的中位數(shù)是 ℃;324日的溫差是 ℃;

2)分別求出322日至27日間的最高氣溫的平均數(shù)、最低氣溫的平均數(shù);

3)經(jīng)過(guò)計(jì)算,最高氣溫和最低氣溫的方差分別為6.335.67,數(shù)據(jù)更穩(wěn)定的是最高氣溫還是最低氣溫?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,管中放置著三根同樣的繩子AA1BB1、CC1;

1)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子AA1的概率是多少?

2)小明先從左端AB、C三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),再?gòu)挠叶?/span>A1、B1、C1三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),求這三根繩子能連結(jié)成一根長(zhǎng)繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富同學(xué)們的課余生活,某學(xué)校計(jì)劃舉行社會(huì)實(shí)踐活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為你最想去的地點(diǎn)是?的問(wèn)卷調(diào)查,要求學(xué)生必須從A(大鵬所城),B(園山),C(西沖),D(歡樂(lè)谷)四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:

1)本次調(diào)查的學(xué)生人數(shù)為  人;

2)在扇形統(tǒng)計(jì)圖中,園山部分所占圓心角的度數(shù)為  ;

3)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

4)若該校共有3000名學(xué)生,估計(jì)該校最想去大鵬所城的學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“某市為處理污水,需要鋪設(shè)一條長(zhǎng)為4000米的管道,為了盡量減少施工對(duì)交通所造成的影響,實(shí)際施工時(shí)×××××.設(shè)原計(jì)劃每天鋪設(shè)管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應(yīng)補(bǔ)為(  )

A.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)

B.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)

C.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成任務(wù)

D.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)好思考的小明在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了中垂三角形,即兩條中線相互垂直的三角形中垂三角形,如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AMBN于點(diǎn)P,像△ABC這樣的三角形均為中垂三角形.設(shè)BC=aAC=b,AB=c

(特例研究)

1)如圖1,當(dāng)tanPAB=1,c=4時(shí),a=b= ;

(歸納證明)

2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖2證明你的結(jié)論;

(拓展證明)

3)如圖4,ABCD中,E、F分別是ADBC的三等分點(diǎn),且AD=3AEBC=3BF,連接AFBE、CE,且BECEE,AFBE相較于點(diǎn)G,AD=3AB=3,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案