(2006•宜賓)如圖,矩形紙片OABC放在直角坐標系中,使點O為坐標原點,邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點O落在線段CB上,設落點為P,折痕為EF.
(1)當CP=2時,恰有OF=,求折痕EF所在直線的函數(shù)表達式;
(2)在折疊中,點P在線段CB上運動,設CP=x(0≤x≤5),過點P作PT∥y軸交折痕EF于點T,設點T的縱坐標為y,請用x表示y,并判斷點T運動形成什么樣的圖象;
(3)請先探究,再猜想:怎樣折疊,可使折痕EF最長?并計算出EF最長時的值.(不要求證明)

【答案】分析:(1)Rt△PCE中,根據(jù)勾股定理得到OE,CE,得到點E、F的坐標,根據(jù)待定系數(shù)法求函數(shù)解析式.
(2)易證Rt△PTH≌Rt△OEH,進而證明Rt△OEH∽Rt△OPC,就可以求出y與x的函數(shù)解析式.
(3)猜想:當點F與點A重合時,折痕EF最長,易證Rt△EOA∽Rt△PCO,就可以解決.
解答:解:(1)設OE=y,則CE=3-y,
∵點P是點0關(guān)于直線EF翻折的對稱點,
在Rt△PCE中,有CE2+CP2=PE2,y=,OF=,
∴點E、F的坐標分別是(0,),(,0),
∴折痕EF所在直線的解析式為y=-+

(2)由題意,點T的坐標為(x,y),連接OP,交EF于點H,
∵由已知得點0折疊后落到點P上,由翻折的對稱性可知,
∴EF為OP的垂直平分線,
∴OH=PH,
∴Rt△PTH≌Rt△OEH,
∴PT=OE,(5分)
Rt△OEH∽Rt△OPC,
UP=x,
OE===PT,
又PT=3-y,
y=-+(0≤x≤5),
所以點T運動形成的圖形是開口向下的拋物線的一部分,
另法:由題意:點T的坐標為(x,y),連接OP、OT.
由翻折性質(zhì)得:OT=PT,
OT2=x2+y2,PT=3-y,
∴x2+y2=9-6y+y2
∴y=(0≤x≤5),
所以點T運動形成的圖形是開口向下的拋物線的一部分.

(3)猜想:當點F與點A重合時,折痕EF最長,(10分)
此時,仍設CP=x,EA為OP的垂直平分線,則有:EA⊥OP,
∴Rt△EOA∽Rt△PCO.
OE=
又由(2)可知:OE=,
解得x=1或x=9,
又∵O≤x≤5,
∴x=1,
∴OE=,
∵在Rt△OEA中,OA=5.
∴EF=
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,是三角形與函數(shù)的綜合題,難度較大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•宜賓)如圖,矩形紙片OABC放在直角坐標系中,使點O為坐標原點,邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點O落在線段CB上,設落點為P,折痕為EF.
(1)當CP=2時,恰有OF=,求折痕EF所在直線的函數(shù)表達式;
(2)在折疊中,點P在線段CB上運動,設CP=x(0≤x≤5),過點P作PT∥y軸交折痕EF于點T,設點T的縱坐標為y,請用x表示y,并判斷點T運動形成什么樣的圖象;
(3)請先探究,再猜想:怎樣折疊,可使折痕EF最長?并計算出EF最長時的值.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2006•宜賓)如圖,在直角坐標系中,一次函數(shù)y=-x+3的圖象與y軸交于點A,與反比例函數(shù)y=的圖象交于點B(-2,m)和點C.
(1)求反比例函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2006•宜賓)如圖,矩形紙片OABC放在直角坐標系中,使點O為坐標原點,邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點O落在線段CB上,設落點為P,折痕為EF.
(1)當CP=2時,恰有OF=,求折痕EF所在直線的函數(shù)表達式;
(2)在折疊中,點P在線段CB上運動,設CP=x(0≤x≤5),過點P作PT∥y軸交折痕EF于點T,設點T的縱坐標為y,請用x表示y,并判斷點T運動形成什么樣的圖象;
(3)請先探究,再猜想:怎樣折疊,可使折痕EF最長?并計算出EF最長時的值.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2006•宜賓)如圖,在直角坐標系中,一次函數(shù)y=-x+3的圖象與y軸交于點A,與反比例函數(shù)y=的圖象交于點B(-2,m)和點C.
(1)求反比例函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

同步練習冊答案