【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到某超市購(gòu)物,學(xué)校與超市的路程是4千米.小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)超市.圖中折線OABC和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問(wèn)題:

1)小聰在超市購(gòu)物的時(shí)間為   分鐘,小聰返回學(xué)校的速度為    千米/分鐘;

2)請(qǐng)你求出小明離開(kāi)學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式;

3)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?

【答案】115;(2st;(33千米

【解析】

1)根據(jù)購(gòu)物時(shí)間=離開(kāi)時(shí)間﹣到達(dá)時(shí)間即可求出小聰在超市購(gòu)物的時(shí)間;再根據(jù)速度=路程÷時(shí)間即可算出小聰返回學(xué)校的速度;

2)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出小明離開(kāi)學(xué)校的路程s與所經(jīng)過(guò)的時(shí)間t之間的函數(shù)關(guān)系式;

3)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出當(dāng)30≤s≤45時(shí)小聰離開(kāi)學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式,令兩函數(shù)關(guān)系式相等即可得出關(guān)于t的一元一次方程,解之即可求出t值,再將其代入任意一函數(shù)解析式求出s值即可.

解:(1301515(分鐘);

4530)=(千米/分鐘).

故答案為:15;

2)設(shè)小明離開(kāi)學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式為smt+n,

將(00)、(454)代入smt+n中,

,解得:,

st

∴小明離開(kāi)學(xué)校的路程s與所經(jīng)過(guò)的時(shí)間t之間的函數(shù)關(guān)系式為st

3)當(dāng)30≤s≤45時(shí),設(shè)小聰離開(kāi)學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式為skt+b,將(30,4)、(45,0)代入skt+b,

,解得:,

s=﹣t+12

st=﹣t+12,

解得:t,

st×3

答:當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是3千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大酒店共有豪華間 50 間,實(shí)行旅游淡季、旺季兩種價(jià)格標(biāo)準(zhǔn):

淡季

旺季

豪華間價(jià)格(元/天)

600

800

(1)該酒店去年淡季,開(kāi)始時(shí),平均每天入住房間數(shù)為 20 間,后來(lái),實(shí)行降價(jià)優(yōu)惠提高豪華間入住率,每降低 20 元,每天入住房間數(shù)增加 1 間.如果豪華間的某日總收入為 12500 元,則該天的豪華間實(shí)際每間價(jià)格為多少元(同天的房間價(jià)格相同);

(2)該酒店豪華間的間數(shù)不變.經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),如果今年旺季豪華間實(shí)行旺季價(jià)格,那么每天都客滿;如果價(jià)格繼續(xù)上漲,那么每增加 25 元,每天未入住房間數(shù)增加 1 間.不考慮其他因素,該酒店將豪華間的價(jià)格上漲多少元時(shí), 豪華間的日總收入最高?最高日總收入是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,AOBC于點(diǎn)O,OEAB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F

(1)求證:ACO的切線;

(2)若點(diǎn)FOA的中點(diǎn),OE=3,求圖中陰影部分的面積;

(3)在(2)的條件下,點(diǎn)PBC邊上的動(dòng)點(diǎn),當(dāng)PE+PF取最小值時(shí),直接寫出BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O,連接AF、CE.

(1)求證:△AOE≌△COF;

(2)求證:四邊形AFCE為菱形;

(3)求菱形AFCE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個(gè)根x1x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個(gè)根,則這四個(gè)根的和為﹣4.其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、在函數(shù),是常數(shù))的圖像上,且點(diǎn)在點(diǎn)的左側(cè)過(guò)點(diǎn)軸,垂足為,過(guò)點(diǎn)軸,垂足為的交點(diǎn)為,連結(jié)、.若的面積分別為14,則的值為( )

A.4B.C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E,若BF=6,AB=5,則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案