【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOBOE在∠BOC內(nèi),且∠DOE60°,∠BOEEOC,則下列四個結論正確的個數(shù)有( 。

①∠BOD30°;②射線OE平分∠AOC;③圖中與∠BOE互余的角有2個;④圖中互補的角有6對.

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)題意首先計算出∠AOD的度數(shù),再計算出∠AOE、∠EOC、∠BOE∠BOD的度數(shù),然后再分析即可.

解:由題意設∠BOE=x,∠EOC=3x,

∵∠DOE60°,OD平分∠AOB,

∴∠AOD∠BOD =60°-x,

根據(jù)題意得:260°-x+4x=180°,解得x=30°,

∴∠EOC=∠AOE90°,∠BOE30°,

∴∠BOD=∠AOD30°,故正確;

∵∠BOD∠AOD30°

射線OE平分∠AOC,故正確;

∵∠BOE30°∠AOB60°,∠DOE60°

∴∠AOB+∠BOE90°,∠BOE+∠DOE90°

圖中與∠BOE互余的角有2個,故正確;

∵∠AOE∠EOC90°

∴∠AOE+∠EOC180°,

∵∠EOC90°,∠DOB30°∠BOE30°,∠AOD30°,

∴∠COD+∠AOD180°,∠COD+∠BOD180°,∠COD+∠BOE180°∠COB+∠AOB180°,∠COB+∠DOE180°,

圖中互補的角有6對,故正確,

正確的有4個,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】先化簡再求值:

1[xy+2)(xy2)﹣2x2y2+4]÷xy),其中x10y

2)(x+2y2﹣(x+y)(3xy)﹣5y2,其中x=﹣2,y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù),對于函數(shù)圖象上橫坐標之差為1的任意兩點,,都成立,則稱這個函數(shù)是限減函數(shù),在所有滿足條件的中,其最大值稱為這個函數(shù)的限減系數(shù).例如函數(shù),當取值時,函數(shù)值分別為,故,因此函數(shù)是限減函數(shù),它的限減系數(shù)為

(1)寫出函數(shù)的限減系數(shù);

(2),已知)是限減函數(shù),且限減系數(shù),求的取值范圍

(3)已知函數(shù)的圖象上一點,過點作直線垂直于軸,將函數(shù)的圖象在點右側的部分關于直線翻折,其余部分保持不變得到一個新函數(shù)的圖象,如果這個新函數(shù)是限減函數(shù),且限減系數(shù),直接寫出點橫坐標的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自相車廠一周計劃生產(chǎn)1400自行車,平均每天生產(chǎn)200量,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負);

1)根據(jù)記錄可知前三天共生產(chǎn) 輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛;

3)該廠實行計件工資制,每輛車60元,超額完成任務每輛獎15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點A,點C分別在x軸和y軸上,點B(1,2).拋物線y=ax2+bx+c經(jīng)過點A、C,交BC延長線于D,與x軸另一個交點為E,且AE=4.

(1)求拋物線的表達式;

(2)點P是直線OD上方拋物線上的一個動點,PFy,PQOD,垂足為Q.

①猜想:PQFQ的數(shù)量關系,并證明你的猜想;

②設PQ的長為,點P的橫坐標為m,求m的函數(shù)表達式,并求的最大值;

(3)如果M是拋物線對稱軸上一點,在拋物線上是否存在一點N,使得以M、N、C、E為頂點的四邊形是平行四邊形?若存在,直接寫出N點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉中心    點,按順時針方向旋轉    度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段ABmm為常數(shù)),點C為直線AB上一點,點P、Q分別在線段BCAC上,且滿足CQ2AQ,CP2BP

1)如圖,若AB6,當點C恰好在線段AB中點時,則PQ   ;

2)若點C為直線AB上任一點,則PQ長度是否為常數(shù)?若是,請求出這個常數(shù);若不是,請說明理由;

3)若點C在點A左側,同時點P在線段AB上(不與端點重合),請判斷2AP+CQ2PQ1的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高速鐵路(簡稱高鐵),是指通過改造原有線路(直線化、軌距標準化),使最高營運速度達到不小于每小時200千米,或者專門修建新的高速新線,使營運速率達到每小時250公里以上的鐵路系統(tǒng)。宜春距離上海960千米,據(jù)了解高鐵的平均速度比動車的平均速度每小時快96千米,從上海到宜春坐動車需要的時間是坐高鐵需要時間的1.8倍。

(1)根據(jù)上面信息,請你求出上海到宜春高鐵和動車的平均速度。

(2)廣州距北京1800千米,以這樣的平均速度坐高鐵從廣州到北京需要多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年,隨著電子商務的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長,根據(jù)企業(yè)財報,某網(wǎng)站得到如下統(tǒng)計表:

年份

2014

2015

2016

2017(預計)

快遞件總量(億件)

140

207

310

450

電商包裹件(億件)

98

153

235

351

(1)請選擇適當?shù)慕y(tǒng)計圖,描述2014﹣2017年“電商包裹件”占當年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達到675億件,請估計其中“電商包裹件”約為多少億件?

查看答案和解析>>

同步練習冊答案