【題目】已知ABC中,∠A=25°,B=40°.

(1)求作:⊙O,使⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心落在AB邊上;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.)

(2)求證:BC是(1)中所作⊙O的切線.

【答案】(1)作圖見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】試題分析:(1)作出線段AC的垂直平分線進(jìn)而得出AC垂直平分線與線段AB的交點(diǎn)O,進(jìn)而以AO為半徑做圓即可.

2)連接CO,由圓周角定理和三角形內(nèi)角和定理,利用已知得出∠OCB=90°,進(jìn)而求出即可.

試題解析:解:(1)作圖如答圖1

2)證明:如答圖2,連接OC

∵OA=OC,∠A=25°,∴∠BOC=50°.

∵∠B=40,∴∠BOC+∠B=90°.

∴∠OCB=90°.

∴OC⊥BC.

∴BC⊙O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,EAF=45°,連接EF,則EFBEDF,試說(shuō)明理由.

(1)思路梳理

ABCD,

ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,可使ABAD重合.

∵∠ADCB=90°,

∴∠FDG=180°,點(diǎn)F、D、G共線.

根據(jù)___________,SAS

易證AFG___________AEF

,得EFBEDF

(2)類(lèi)比引申

如圖2,四邊形ABCD中,ABADBAD=90°.點(diǎn)E、F分別在邊BCCD上,EAF=45°.若B、D都不是直角,則當(dāng)BD滿足等量關(guān)系______________B+D=180°

時(shí),仍有EFBEDF

(3)聯(lián)想拓展

如圖3,在ABC中,BAC=90°,ABAC,點(diǎn)D、E均在邊BC上,且DAE=45°.猜想BD、DEEC應(yīng)滿足的等量關(guān)系,并寫(xiě)出推理過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)便民超市為了了解顧客的消費(fèi)情況,在該小區(qū)居民中進(jìn)行調(diào)查,詢問(wèn)每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請(qǐng)問(wèn):

(1)這種統(tǒng)計(jì)圖通常被稱為什么統(tǒng)計(jì)圖?(2)此次調(diào)查共詢問(wèn)了多少戶人家?

(3)超過(guò)半數(shù)的居民每周去多少次超市?(4)請(qǐng)將這幅圖改為扇形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過(guò)點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△ABC中,E是BC邊上一點(diǎn),沿AE折疊,點(diǎn)B恰好落在AC邊上的點(diǎn)D處,若∠BAC=60°,BE=CD,則∠AED=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是(  )

A. 30 B. 34 C. 36 D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在寬20米,長(zhǎng)32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問(wèn)道路應(yīng)該多寬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四邊形ABCD中,點(diǎn)EAD上,BCE=∠ACD=90°BAC=∠D,BC=CE

(1)求證:AC=CD;

(2)若AC=AE,求DEC的度數(shù).

【答案】(1)證明見(jiàn)解析;(2)112.5°.

【解析】試題分析: 根據(jù)同角的余角相等可得到結(jié)合條件再加上 可證得結(jié)論;
根據(jù) 得到 根據(jù)等腰三角形的性質(zhì)得到 由平角的定義得到

試題解析: 證明:

ABCDEC中, ,

2∵∠ACD90°ACCD,

∴∠1D45°,

AEAC,

∴∠3567.5°,

∴∠DEC180°5112.5°

型】解答
結(jié)束】
21

【題目】一個(gè)零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,

AB3,BC4,CD12,AD13,假如這是一塊鋼板,你能幫工人師傅計(jì)算一下這塊鋼板的面積嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)底面直徑為10cm,高為18cm的圓柱形瓶?jī)?nèi)裝滿水,將瓶?jī)?nèi)的水倒入一個(gè)底面直徑是12cm,高10cm的圓柱形玻璃杯內(nèi),能否完全裝下?若裝不下,則瓶?jī)?nèi)水面還有多高?若沒(méi)裝滿,求杯內(nèi)水面的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案