【題目】如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK=

【答案】2 ﹣3
【解析】解:連接BH,如圖所示:
∵四邊形ABCD和四邊形BEFG是正方形,
∴∠BAH=∠ABC=∠BEH=∠F=90°,
由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,
∴∠ABE=60°,
在Rt△ABH和Rt△EBH中,
,
∴Rt△ABH≌△Rt△EBH(HL),
∴∠ABH=∠EBH= ∠ABE=30°,AH=EH,
∴AH=ABtan∠ABH= × =1,
∴EH=1,
∴FH= ﹣1,
在Rt△FKH中,∠FKH=30°,
∴KH=2FH=2( ﹣1),
∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3;
故答案為:2 ﹣3.

連接BH,由正方形的性質(zhì)得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL證明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH= ∠ABE=30°,AH=EH,由三角函數(shù)求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,小正方形的邊長為1,△ABC的頂點在格點上.

(1)判斷△ABC是否是直角三角形?并說明理由.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點的直線與直線;相交于點

)求直線的表達式.

)過動點且垂于軸的直線與的交點分別為,,當(dāng)點位于點上方時,寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在RtABC中,∠C=90°,BC=6cm,AC=8 cm,AB=10 cm. 現(xiàn)有一動點P,從A點出發(fā),沿著三角形的邊AC-CB-BA運動,回到A點停止,速度為1 cm/s,設(shè)運動時間為t s.

(1)當(dāng)t=_______時,ABC的周長被線段AP平分為相等的兩部分.

(2)當(dāng)t=_______時,APC的面積等于ABC面積的一半.

(3)還有一個DEF,E=90°,如圖所示,DE=4cm,DF=5cm,D=A. ABC的邊上,若另外有一個動點Q,與P 同時從A點出發(fā),沿著邊AB-BC-CA運動,回到點A停止. 在兩點運動過程中某一時刻,恰好APQDEF全等,則點Q的運動速度 cm/s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的有(

①RtABC中,已知兩邊長分別為34,則第三邊長為5

有一個內(nèi)角等于其他兩個內(nèi)角和的三角形是直角三角形;

三角形的三邊分別為a,b,C,若a2+c2=b2,那么C=90°

ABC中,ABC=156,則ABC是直角三角形.

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準(zhǔn)備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域?qū)佋O(shè)塑膠地面作為運動場地.

(1)設(shè)通道的寬度為x米,則a=(用含x的代數(shù)式表示);
(2)若塑膠運動場地總占地面積為2430平方米.請問通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖,后人稱其為趙爽弦圖(如圖),圖由弦圖變化得到,它是由作個全等的直角三角形拼接而成,記圖中正方形,正方形,正方形的面積分別為、,若,則的值是(

A. 5 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACDBCE中,AC=BC,AD=BE,CD=CE,ACE=55°,BCD=155°,ADBE相交于點P,則∠BPD的度數(shù)為(

A. 120° B. 125° C. 130° D. 155°

查看答案和解析>>

同步練習(xí)冊答案