【題目】學(xué)生會(huì)要舉辦一個(gè)校園書畫藝術(shù)展覽會(huì),為國(guó)慶獻(xiàn)禮,小華和小剛準(zhǔn)備將長(zhǎng)AD400cm,寬AB130cm的矩形作品四周鑲上彩色紙邊裝飾,如圖所示,兩人在設(shè)計(jì)時(shí)要求內(nèi)外兩個(gè)矩形相似,矩形作品面積是總面積的,他們一致認(rèn)為上下彩色紙邊要等寬,左右彩色紙邊要等寬,這樣效果最好,請(qǐng)你幫助他們?cè)O(shè)計(jì)彩色紙邊寬度.

【答案】上下彩色紙邊寬為13cm,左右彩色紙邊寬為40cm

【解析】

由內(nèi)外兩個(gè)矩形相似可得,設(shè)A′B′=13x,根據(jù)矩形作品面積是總面積的列方程可求出x的值,進(jìn)而可得答案.

AB130,AD400,

∵內(nèi)外兩個(gè)矩形相似,

,

∴設(shè)A′B′13x,則A′D′40x,

∵矩形作品面積是總面積的,

解得:x±12,

x=﹣120不合題意,舍去,

x12,

∴上下彩色紙邊寬為(13x130÷213,左右彩色紙邊寬為(40x400÷240

答:上下彩色紙邊寬為13cm,左右彩色紙邊寬為40cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小型水庫(kù)欄水壩的橫斷面是四邊形ABCDDCAB,測(cè)得迎水坡的坡角α=30°,已知背水坡的坡比為1.21,壩頂部DC寬為2m,壩高為6m,則壩底AB的長(zhǎng)為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為數(shù)學(xué)實(shí)驗(yàn)“先行示范!保粩(shù)學(xué)活動(dòng)小組帶上高度為1.5m的測(cè)角儀BC,對(duì)建筑物AO進(jìn)行測(cè)量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測(cè)得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)40mDE處,測(cè)得頂點(diǎn)A的仰角為75°.

1)求∠CAE的度數(shù);

2)求AE的長(zhǎng)(結(jié)果保留根號(hào));

3)求建筑物AO的高度(精確到個(gè)位,參考數(shù)據(jù):,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是矩形內(nèi)的任意一點(diǎn),連接、、, 得到 , , , ,設(shè)它們的面積分別是,,, 給出如下結(jié)論:③若,則④若,則點(diǎn)在矩形的對(duì)角線上.其中正確的結(jié)論的序號(hào)是(

A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘相隔的兩棵樹A,B的距離,他們?cè)O(shè)計(jì)了如圖的測(cè)量方案:從樹A沿著垂直于AB的方向走到E,再?gòu)?/span>E沿著垂直于AE的方向走到F,CAE上一點(diǎn),其中4位同學(xué)分別測(cè)得四組數(shù)據(jù):①AC,∠ACB;②EF,DEAD;③CD,∠ACB,∠ADB;④∠F,∠ADBFB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A,B兩樹距離的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中有4個(gè)大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-12,-3,4

1)搖勻后任意摸出1個(gè)球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________

2)搖勻后先從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M10),直線yx+m與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在y軸上.Pa0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).

1)求m的值及這個(gè)二次函數(shù)的解析式;

2)若點(diǎn)P的橫坐標(biāo)為2,求△ODE的面積;

3)當(dāng)0a3時(shí),求線段DE的最大值;

4)若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形

1)已知:如圖1,四邊形ABCD等對(duì)角四邊形∠A≠∠C,∠A70°,∠B80°.求∠C∠D的度數(shù).

2)在探究等對(duì)角四邊形性質(zhì)時(shí):

小紅畫了一個(gè)等對(duì)角四邊形”ABCD(如圖2),其中∠ABC∠ADC,ABAD,此時(shí)她發(fā)現(xiàn)CBCD成立.請(qǐng)你證明此結(jié)論;

由此小紅猜想:對(duì)于任意等對(duì)角四邊形,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.

3)已知:在等對(duì)角四邊形"ABCD中,∠DAB60°,∠ABC=90°AB5,AD4.求對(duì)角線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)C沿著某條路徑運(yùn)動(dòng),以點(diǎn)C為旋轉(zhuǎn)中心,將點(diǎn)A(0,4)逆時(shí)針旋轉(zhuǎn)90°到點(diǎn)Bm,1),若﹣5≤m≤5,則點(diǎn)C運(yùn)動(dòng)的路徑長(zhǎng)為__

查看答案和解析>>

同步練習(xí)冊(cè)答案