【題目】骰子是一種特別的數(shù)字立方體(見下圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

【答案】C

【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解.

根據(jù)正方體的表面展開圖,相對的面之間一定相隔一個正方形,

A、1點與3點是向?qū)γ妫?/span>4點與6點是向?qū)γ妫?/span>2點與5點是向?qū)γ,所以不可以折成符合?guī)則的骰子,故本選項錯誤;

B、3點與4點是向?qū)γ妫?/span>1點與5點是向?qū)γ妫?/span>2點與6點是向?qū)γ,所以不可以折成符合?guī)則的骰子,故本選項錯誤;

C、4點與3點是向?qū)γ妫?/span>5點與2點是向?qū)γ妫?/span>1點與6點是向?qū)γ妫钥梢哉鄢煞弦?guī)則的骰子,故本選項正確;

D、1點與5點是向?qū)γ妫?/span>3點與4點是向?qū)γ妫?/span>2點與6點是向?qū)γ,所以不可以折成符合?guī)則的骰子,故本選項錯誤.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的小圓與半徑為2的大圓上有一點與數(shù)軸上原點重合,兩圓在數(shù)軸上做無滑動的滾動,小圓的運動速度為每秒π個單位,大圓的運動速度為每秒個單位.

1)若大圓沿數(shù)軸向左滾動1周,則該圓與數(shù)軸重合的點所表示的數(shù)是  ;

2)若小圓不動,大圓沿數(shù)軸來回滾動,規(guī)定大圓向右滾動時間記為正數(shù),向左滾動時間記為負(fù)數(shù),依次滾動的情況記錄如下(單位:秒):﹣1+2,﹣4,﹣2+3,﹣8

①第幾次滾動后,大圓離原點最遠(yuǎn)?

②當(dāng)大圓結(jié)束運動時,大圓運動的路程共有多少?此時兩圓與數(shù)軸重合的點之間的距離是多少?(結(jié)果保留π

3)若兩圓同時在數(shù)軸上各自沿著某一方向連續(xù)滾動,滾動一段時間后兩圓與數(shù)軸重合的點之間相距,求此時兩圓與數(shù)軸重合的點所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以下幾種說法中:①是同位角;②是同位角;③是內(nèi)錯角;④是同旁內(nèi)角;⑤是同位角;⑥是同位角;正確的個數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD向右平移一段距離后得到四邊形.

1)找出圖中存在的平行且相等的四條線段(即四條線段全部互相平行且相等);

2)找出圖中存在的四組相等的角;

3)四邊形ABCD與四邊形的形狀、大小相同嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=k1x+b的圖象分別與x軸、y軸的正半軸交于 A,B 兩點,且與反比例函數(shù)y=交于 C,E 兩點,點 C 在第二象限,過點 C CDx軸于點 DAC=2,OA=OB=1

(1)△ADC 的面積;

2)求反比例函數(shù)y= 與一次函數(shù)的y=k1x+b表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AD5,AB3.若M為射線AD上的一個動點,將ABM沿BM折疊得到NBM.若NBC是直角三角形.則所有符合條件的M點所對應(yīng)的AM長度的和為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M=(a24x310x210x5是關(guān)于x的二次多項式,且二次項系數(shù)和一次項系數(shù)分別為bc,在數(shù)軸上A、B、C三點所對應(yīng)的數(shù)分別是a、b、c

1)則a b ,c

2)有一動點P從點A出發(fā),以每秒4個單位的速度向右運動,多少秒后,PA、B、C的距離和為40個單位?

3)在(2)的條件下,當(dāng)點P移動到點B時立即掉頭,速度不變,同時點T和點Q分別從點A和點C出發(fā),向左運動,點T的速度1個單位/秒,點Q的速度5個單位/秒,設(shè)點P、QT所對應(yīng)的數(shù)分別是xP、xQxT,點Q出發(fā)的時間為t,當(dāng)t時,求2|xPxT||xTxQ|2|xQxP|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+x的圖象與x軸交于點 A,B,交 y 軸于點 C,拋物線的頂點為 D

(1)求拋物線頂點 D 的坐標(biāo)以及直線 AC 的函數(shù)表達(dá)式;

(2)點 P 是拋物線上一點,且點P在直線 AC 下方,點 E 在拋物線對稱軸上,當(dāng)△BCE 的周長最小時,求△PCE 面積的最大值以及此時點 P 的坐標(biāo);

3)在(2)的條件下,過點 P 且平行于 AC 的直線分別交x軸于點 M,交 y 軸于點N,把拋物線y=x2+x沿對稱軸上下平移,平移后拋物線的頂點為 D',在平移的過程中,是否存在點 D',使得點 D',MN 三點構(gòu)成的三角形為直角三角形,若存在,直接寫出點 D'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BI,CI分別平分∠ABC,∠ACB,過I點作DE∥BC,交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC.其中正確的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

同步練習(xí)冊答案