【題目】小剛從家出發(fā)勻速步行去學(xué)校上學(xué).幾分鐘后發(fā)現(xiàn)忘帶數(shù)學(xué)作業(yè),于是掉頭原速返回并立即打電話給爸爸,掛斷電話后爸爸立即勻速跑步去追小剛,同時(shí)小剛以原速的兩倍勻速跑步回家,爸爸追上小剛后以原速的倍原路步行回家.由于時(shí)間關(guān)系小明拿到作業(yè)后同樣以之前跑步的速度趕往學(xué)校,并在從家出發(fā)后23分鐘到校(小剛被爸爸追上時(shí)交流時(shí)間忽略不計(jì)).兩人之間相距的路程y(米)與小剛從家出發(fā)到學(xué)校的步行時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,則小剛家到學(xué)校的路程為_____米.
【答案】2960
【解析】
根據(jù)圖像求出相遇后爸爸回家所用的時(shí)間,進(jìn)而得出小剛打完電話與爸爸相遇所用的時(shí)間,結(jié)合題意得出相遇后爸爸2分鐘走的路程,得到小剛后來的速度,利用“路程=速度×時(shí)間”公式計(jì)算即可得出答案.
解:由圖可知,小剛和爸爸相遇后,到小剛爸爸回到家用時(shí)17﹣15=2(分鐘),
∵爸爸追上小剛后以原速的倍原路步行回家,
∴小剛打完電話到與爸爸相遇用的時(shí)間為1分鐘,
∵由于時(shí)間關(guān)系小明拿到作業(yè)后同樣以之前跑步的速度趕往學(xué)校,
∴小剛和爸爸相遇之后跑步的1分和爸爸2分鐘走的路程是720米,
∴小剛后來的速度為:1040﹣720=320(米/分鐘)
則小剛家到學(xué)校的路程為:1040+(23﹣17)×320=1040+6×320=1040+1920=2960(米),
故答案為:2960.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線與x軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為G.
①當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點(diǎn)的個(gè)數(shù);
②若區(qū)域G內(nèi)恰有2個(gè)整點(diǎn),直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0),OB=OC=3OA.若拋物線L2與拋物線L1關(guān)于直線x=2對(duì)稱.
(1)求拋物線L1與拋物線L2的解析式;
(2)在拋物線L1上是否存在一點(diǎn)P,在拋物線L2上是否存在一點(diǎn)Q,使得以BC為邊,且以B、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn). 分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠是直角時(shí),求的度數(shù);(注明:當(dāng)直角邊為斜邊一半時(shí),這條直角邊所對(duì)的銳角為30度)
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求長(zhǎng)的最大值和此時(shí)的度數(shù),直接寫出結(jié)果不必說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與 x 軸交于點(diǎn) C,與 y 軸交于點(diǎn) B,拋物線 經(jīng)過 B、C 兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn) E 是拋物線上的一動(dòng)點(diǎn)(不與 B,C 兩點(diǎn)重合),△BEC 面積記為 S,當(dāng) S 取何值時(shí),對(duì)應(yīng)的點(diǎn) E 有且只有三個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b>的解集 ;
(3)過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線y1=2x+4分別與x軸,y軸交于A,B兩點(diǎn),以線段OB為一條邊向右側(cè)作矩形OCDB,且點(diǎn)D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y1=2x+4與直線y2=﹣x+b交于點(diǎn)P.則P的坐標(biāo)為( 。
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是關(guān)于x的方程2x2﹣4mx+2m2+3m+2=0的兩個(gè)實(shí)根,當(dāng)m=_____時(shí),x12+x22有最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com