【題目】問題情境:在綜合與實踐課上,同學們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學活動,小穎想到借助正方形網(wǎng)格解決問題.圖1,圖2都是8×8的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.

操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC的面積.

1)在圖1中,小穎所畫的△ABC的三邊長分別是AB=__________,BC=__________,AC=__________;△ABC的面積為__________.

解決問題:(2)已知△ABC中,AB=,BC=2,AC=5,請你根據(jù)小穎的思路,在圖2的正方形網(wǎng)格中畫出△ABC,并計算△ABC的面積.

【答案】(1)5;;;;(2)見解析,△ABC的面積:10.

【解析】

1)根據(jù)方格與勾股定理即可求出各邊長,再利用大正方形的面積減去各邊上的直角三角形面積即可求出△ABC的面積;(2)根據(jù)三角形的邊長,利用勾股定理的逆定理知其為直角三角形,故利用方格可畫出圖形,再利用割補法即可求出面積.

1AB==5,BC==,

AC==,

ABC的面積為:4×4×3×4×1×4×3×1=,

故答案為:5;;;;

2)補圖如下.△ABC的面積:6×5×3×1×5×5×2×6=10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20,購買3棵榕樹和2棵香樟樹共需340.

(1)榕樹和香樟樹的單價各是多少?

(2)根據(jù)學校實際情況,需購買兩種樹苗共150,總費用不超過10840,且購買香樟樹的棵數(shù)不少于榕樹的1.5,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上.

(1)如圖1,當折痕的另一端FAB邊上且AE4時,求AF的長

(2)如圖2,當折痕的另一端FAD邊上且BG10時,

求證:EFEGAF的長.

(3)如圖3,當折痕的另一端FAD邊上,B點的對應(yīng)點E在長方形內(nèi)部,EAD的距離為2cm,且BG10時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-3,1),B(-2,4).

1)請你在方格中建立直角坐標系,并寫出C點的坐標;

2)把△ABC向下平移1個單位長度,再向右平移2個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標為(ab),則點P的對應(yīng)點P1的坐標是

3)在x軸上存在一點D,使△DB1C1的面積等于3,求滿足條件的點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華人民共和國道路交通管理條例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m,過了2 s,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AE⊥BD,垂足為E,ED=3BE,點P、Q分別在BD、AD上,則AP+PQ最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.

(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數(shù)為時,四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實數(shù)a,b在數(shù)軸上對應(yīng)點的位置如圖所示,化簡|a|+ 的結(jié)果是( )

A.﹣2a+b
B.2a﹣b
C.﹣b
D.b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線MN與直線PQ相交于O,∠POM60°,點A在射線OP上運動,點B在射線OM上運動.

(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.

(3)在(2)的條件下,在△CDE中,如果有一個角是另一個角的2倍,請直接寫出∠DCE的度數(shù).

查看答案和解析>>

同步練習冊答案