【題目】計算:
(1)4×(﹣ )﹣ +3﹣2;
(2)a(a﹣3)﹣(a﹣1)2 .
【答案】
(1)解:4×(﹣ )﹣ +3﹣2
=﹣ ﹣5+
=﹣ ﹣5+
=﹣5
(2)解:a(a﹣3)﹣(a﹣1)2
=a2﹣3a﹣(a2﹣2a+1)
=﹣a﹣1
【解析】(1)根據算術平方根的定義以及負指數(shù)冪的性質分別化簡求出即可;(2)首先去括號,進而合并同類項即可.
【考點精析】本題主要考查了整數(shù)指數(shù)冪的運算性質和實數(shù)的運算的相關知識點,需要掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①面積之比為1:2的兩個相似三角形的周長之比是1:4;②三視圖相同的幾何體是正方形;③-27沒有立方根;④對角線互相垂直的四邊形是菱形;⑤某中學人數(shù)相等的甲、乙兩班學生參加了同一次數(shù)學測驗,班平均分和方差分別為 =82分, =82分, =245, =190,那么成績較為整齊的是乙班,
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)商進行商鋪促銷,廣告上寫著如下條款: 投資者購買商鋪后,必須由開發(fā)商代為租賃5年,5年期滿后由開發(fā)商以比原商鋪標價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:
方案一:投資者按商鋪標價一次性付清鋪款,每年可以獲得的租金為商鋪標價的10%.
方案二:投資者按商鋪標價的八五折一次性付清鋪款,2年后每年可以獲得的租金為商鋪標價的10%,但要繳納租金的10%作為管理費用.
(1)請問:投資者選擇哪種購鋪方案,5年后所獲得的投資收益率更高?為什么?(注:投資收益率= ×100%)
(2)對同一標價的商鋪,甲選擇了購鋪方案一,乙選擇了購鋪方案二,那么5年后兩人獲得的收益將相差5萬元.問:甲、乙兩人各投資了多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD,BC于點E,F(xiàn),作BH⊥AF于點H,分別交AC,CD于點G,P,連接GE,GF.
(1)求證:△OAE≌△OBG;
(2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由;
(3)試求: 的值(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結果都精確到0.1米,參考數(shù)據: ≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】線段MN在直角坐標系中的位置如圖所示,若線段M′N′與MN關于y軸對稱,則點M的對應點M′的坐標為( )
A.(4,2)
B.(﹣4,2)
C.(﹣4,﹣2)
D.(4,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2個單位,一只烏龜從A點出發(fā)以2個單位/秒的速度順時針繞正方形運動,另有一只兔子也從A點出發(fā)以6個單位/秒的速度逆時針繞正方形運動,則第2018次相遇在( 。
A. 點A B. 點B C. 點C D. 點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內,沿前側內墻保留3m的空地,其他三側內墻各保留1m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2? |
我的結果也正確!
(1)小明發(fā)現(xiàn)他解答的結果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有學生2100人,在“文明我先行”活動中,開設了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學生必須且只能選一門,為了解學生的報名意向,學校隨機調查了100名學生,并制成統(tǒng)計表:校本課程意向統(tǒng)計表
課程類型 | 頻數(shù) | 頻率(%) |
法律 | s | 0.08 |
禮儀 | a | 0.20 |
環(huán)保 | 27 | 0.27 |
感恩 | b | m |
互助 | 15 | 0.15 |
合計 | 100 | 1.00 |
請根據統(tǒng)計表的信息,解答下列問題;
(1)在這次調查活動中,學校采取的調查方式是(填寫“普查”或“抽樣調查”);
(2)a= , b= , m=;
(3)如果要畫“校本課程報名意向扇形統(tǒng)計圖”,那么“禮儀”類校本課程對應的扇形圓心角的度數(shù)是;
(4)請你估計,選擇“感恩”類校本課程的學生約有人.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com