【題目】如圖,將△ABC沿射線BC方向平移3 cm得到△DEF.若△ABC的周長(zhǎng)為14 cm,則四邊形ABFD的周長(zhǎng)為(

A. 20 cmB. 17 cm

C. 14 cmD. 23 cm

【答案】A

【解析】

先根據(jù)平移的性質(zhì)得DF=AC,AD=CF=3cm,再由ABC的周長(zhǎng)為14cm得到AB+BC+AC=14cm,然后利用等線段代換可計(jì)算出AB+BC+CF+DF+AD=20cm),于是得到四邊形ABFD的周長(zhǎng)為20cm

∵△ABC沿BC方向平移3cm得到DEF

DF=AC,AD=CF=3cm,

∵△ABC的周長(zhǎng)為14cm,即AB+BC+AC=14cm,

AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=14+3+3=20(cm)

即四邊形ABFD的周長(zhǎng)為20cm.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAO是角平分線,DAO上一點(diǎn),作△CDE,使DE=DC,∠EDC=∠BAC,連接BE

(1)若∠BAC=60°,求證:△ACD≌△BCE;

(2)若∠BAC=90°,AD=DO,求的值;

(3)若∠BAC=90°,FBE中點(diǎn),GBE延長(zhǎng)線上一點(diǎn),CF=CG,AD=nDO,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為4的菱形ABCD中,AC為其對(duì)角線,∠ABC=60°點(diǎn)M、N分別是邊BC、邊CD上的動(dòng)點(diǎn),且MB=NC.連接AM、AN、MNMNAC于點(diǎn)P


1)△AMN是什么特殊的三角形?說明理由.并求其面積最小值;
2)求點(diǎn)P到直線CD距離的最大值;


3)如圖2,已知MB=NC=1,點(diǎn)E、F分別是邊AM、邊AN上的動(dòng)點(diǎn),連接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此時(shí)AE、AF的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,4),B(-2,1)C(-4,2).

(1)將△ABC先向右平移7個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,畫出第二次平移后的△;

(2)以點(diǎn)O(0,0)為對(duì)稱中心,畫出與△ABC成中心對(duì)稱的△

(3)將點(diǎn)B繞坐標(biāo)原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°至點(diǎn),則點(diǎn)的坐標(biāo)為(______,______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:

如:解方程

解:原方程可變形,得:

,

,

直接開平方并整理,得. ,

我們稱小明這種解法為平均數(shù)法”.

(1)下面是小明用“平均數(shù)法”解方程時(shí)寫的解題過程.

解:原方程可變形,得:

直接開平方并整理,得. ,

上述過程中的ab、c、d表示的數(shù)分別為 , , ,

(2)請(qǐng)用平均數(shù)法解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a、b、c滿足關(guān)系式+(b﹣3)2=0,(c﹣4)20

(1)求a、b、c的值;

(2)如果在第二象限內(nèi)有一點(diǎn)P(﹣m,),請(qǐng)用含m的式子表示四邊形ABOP的面積;

(3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積與ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程,解應(yīng)用題

甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時(shí)出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達(dá)影院.

1)求甲、乙兩人的速度?

2)在看電影時(shí),甲突然接到家長(zhǎng)電話讓其15分鐘內(nèi)趕回家,時(shí)間緊迫改變速度,比來時(shí)每分鐘多走25米,甲是否能按要求時(shí)間到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)學(xué)生全部參加初二生物地理會(huì)考,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為AB,C,D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題

1)抽取了______名學(xué)生成績(jī);(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)扇形統(tǒng)計(jì)圖中等級(jí)D所在的扇形的圓心角度數(shù)是______

4)若A,B,C代表合格,該校初二年級(jí)有300名學(xué)生,求全年級(jí)生物合格的學(xué)生共約多少人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮、小穎的手上都有兩根長(zhǎng)度分別為5、8的木棒,小亮與小穎都想通過轉(zhuǎn)動(dòng)轉(zhuǎn)盤游戲來獲取第三根木棒,如圖,一個(gè)均勻的轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有木棒的長(zhǎng)度2,3,5,8,10,126個(gè)數(shù)字.小亮與小穎各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向的數(shù)字即為轉(zhuǎn)出的第三根木棒的長(zhǎng)度.若三根木棒能組成三角形則小亮獲勝,三根木棒能組成等腰三角形則小穎獲勝.

(1)小亮獲勝的概率是   ;

(2)小穎獲勝的概率是   ;

(3)請(qǐng)你用這個(gè)轉(zhuǎn)盤設(shè)計(jì)一個(gè)游戲,使得對(duì)小亮與小穎均是公平的;

(4)小穎發(fā)現(xiàn),她連續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤10次,都沒轉(zhuǎn)到58,能不能就說小穎獲勝的可能性為0?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案