【題目】如圖,已知AB是⊙O的直徑,點(diǎn)D在⊙O上,∠DAB45°,BCAD,CDAB

1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若⊙O的半徑為1,求圖中陰影部分的周長(zhǎng).

【答案】1)直線CD與⊙O相切,理由見(jiàn)解析;(22++

【解析】

1)直線與圓的位置關(guān)系無(wú)非是相切或不相切,可連接OD,證OD是否與CD垂直即可.

2)陰影部分的周長(zhǎng)可由CD+BC+扇形OBD的弧長(zhǎng)求得;扇形的半徑和圓心角已求得,那么關(guān)鍵是求出平行四邊形CD的長(zhǎng),可通過(guò)證四邊形ABCD是平行四邊形,得出CDAB,由此可求出CD的長(zhǎng),即可得解.

解:(1)直線CDO相切.理由如下:

如圖,連接OD,

OAOD,DAB45°,

∴∠ODA45°

∴∠AOD90°,

CDAB,

∴∠ODCAOD90°,即ODCD,

點(diǎn)DO上,

直線CDO相切;

2∵⊙O的半徑為1,ABO的直徑,

AB2,

BCADCDAB,

四邊形ABCD是平行四邊形,

CDAB2,

由(1)知:AOD是等腰直角三角形,

OAOD1,

BCAD

圖中陰影部分的周長(zhǎng)=CD+BC+2++

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,于點(diǎn)上一點(diǎn),且,延長(zhǎng)至點(diǎn),連接,使,延長(zhǎng)交于點(diǎn),連結(jié),

1)連結(jié),求證:;

2)求證:的切線;

3)若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元,三年后如果備件多余,每個(gè)以元()回收.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得到如下頻數(shù)分布直方圖:

表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).

1)以100臺(tái)機(jī)器為樣本,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法估計(jì)不超過(guò)19的概率;

2)以這100臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù)為決策依據(jù),在之中選其一,當(dāng)為何值時(shí),選比較劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有4個(gè)標(biāo)有1,23,4的小球,它們形狀、大小完全相同.小明從盒子里隨機(jī)取出一個(gè)小球,記下球上的數(shù)字,作為點(diǎn)P的橫坐標(biāo)x,放回然后再隨機(jī)取出一個(gè)小球,記下球上的數(shù)字,作為點(diǎn)P的縱坐標(biāo)y

1)畫(huà)樹(shù)狀圖或列表,寫(xiě)出點(diǎn)P所有可能的坐標(biāo);

2)求出點(diǎn)P在以原點(diǎn)為圓心,5為半徑的圓上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的“過(guò)直線外一點(diǎn)作這條直線的平行線”的尺規(guī)作圖過(guò)程.

已知:如圖1,直線BC及直線BC外一點(diǎn)P

求作:直線PE,使得PEBC

作法:如圖2

在直線BC上取一點(diǎn)A,連接PA;

作∠PAC的平分線AD

以點(diǎn)P為圓心,PA長(zhǎng)為半徑畫(huà)弧,交射線AD于點(diǎn)E

作直線PE

所以直線PE就是所求作的直線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程.

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:∵AD平分∠PAC,

∴∠PAD=∠CAD

PAPE

∴∠PAD   ,

∴∠PEA   ,

PEBC.(   )(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的一個(gè)頂點(diǎn)O是平面直角坐標(biāo)系的原點(diǎn),頂點(diǎn)A,C分別在y軸和x軸上,P為邊OC上的一個(gè)動(dòng)點(diǎn),且PQ⊥BP,PQ=BP,當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí),可知點(diǎn)Q始終在某函數(shù)圖象上運(yùn)動(dòng),則其函數(shù)圖象是(

A.線段B.圓弧

C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)如圖①,正方形中,點(diǎn)邊上,平分.若我們分別延長(zhǎng),交于點(diǎn),則易證.(不需要證明)

(探究)如圖②,在矩形中,點(diǎn)邊的中點(diǎn),點(diǎn)邊上,平分.求證:

(應(yīng)用)在(探究)的條件下,若,,直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知,拋物線(a0)的頂點(diǎn)為A(s,t)(其中s0) .

(1)若拋物線經(jīng)過(guò)(2,2)和(-337)兩點(diǎn),且s=3.

①求拋物線的解析式;

②若n>3, 設(shè)點(diǎn)M(),N()在拋物線上,比較,的大小關(guān)系,并說(shuō)明理由;

(2)若a=2,c=-2,直線與拋物線的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;

(3)若點(diǎn)A在拋物線上,且2≤s<3時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案