如圖,在直徑為AB的⊙O中,∠DAB﹦30°,∠COD﹦60°,OD∥AC嗎?為什么?

答案:略
解析:

解:OD∥AC

因為∠COD60°,所以∠CAD30°

又因為∠DAB30°,所以∠CAO60°∠DOB60°

所以∠DOB∠CAO

所以OD∥AC


提示:

點撥:欲證平行離不開角,在圓中,證明角一定與圓周角、圓心角有關(guān).


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•貴陽)如圖,在直徑為AB的半圓O上有一動點P從A點出發(fā),按順時針方向繞半圓勻速運動到B點,然后再以相同的速度沿著直徑回到A點停止,線段OP的長度d與運動時間t之間的函數(shù)關(guān)系用圖象描述大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h;

(2)設(shè)DN=x,當x取何值時,水池DEFN的面積最大?

(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h;
(2)設(shè)DN=x,當x取何值時,水池DEFN的面積最大?
(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直徑為AB的半圓O上有一動點P從A點出發(fā),按順時針方向繞半圓勻速運動到B點,然后再以相同的速度沿著直徑回到A點停止,線段OP的長度d與運動時間t之間的函數(shù)關(guān)系用圖象描述大致是

A.       B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省沭陽銀河學校九年級下學期質(zhì)量檢測數(shù)學卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h;
(2)設(shè)DN=x,當x取何值時,水池DEFN的面積最大?
(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

查看答案和解析>>

同步練習冊答案