【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動(dòng)點(diǎn),E是AC邊上一點(diǎn),若AE=2,EM+CM的最小值為 .
【答案】
【解析】解:連接BE,與AD交于點(diǎn)M.則BE就是EM+CM的最小值. 取CE中點(diǎn)F,連接DF.
∵等邊△ABC的邊長為6,AE=2,
∴CE=AC﹣AE=6﹣2=4,
∴CF=EF=AE=2,
又∵AD是BC邊上的中線,
∴DF是△BCE的中位線,
∴BE=2DF,BE∥DF,
又∵E為AF的中點(diǎn),
∴M為AD的中點(diǎn),
∴ME是△ADF的中位線,
∴DF=2ME,
∴BE=2DF=4ME,
∴BM=BE﹣ME=4ME﹣ME=3ME,
∴BE= BM.
在直角△BDM中,BD= BC=3,DM= AD= ,
∴BM= = ,
∴BE= .
∵EM+CM=BE
∴EM+CM的最小值為 .
要求EM+CM的最小值,需考慮通過作輔助線轉(zhuǎn)化EM,CM的值,從而找出其最小值求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=900,AC=6,BC=8.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿AB向點(diǎn)B勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿BA向點(diǎn)A勻速運(yùn)動(dòng).過線段MN的中點(diǎn)G作邊AB的垂線,垂足為點(diǎn)G,交△ABC的另一邊于點(diǎn)P,連接PM、PN,當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t= 秒時(shí),動(dòng)點(diǎn)M、N相遇;
(2)設(shè)△PMN的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)取線段PM的中點(diǎn)K,連接KA、KC,在整個(gè)運(yùn)動(dòng)過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一組數(shù)據(jù):2,5,5,6,7,每個(gè)數(shù)據(jù)加1后的平均數(shù)為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,寫出△ABC的各頂點(diǎn)坐標(biāo),并畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 寫出△ABC關(guān)于X軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(3)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點(diǎn)作AB的垂線,再在BF上取C、D兩點(diǎn)使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀回答下列問題:
(1)方案(Ⅰ)是否可行?請(qǐng)說明理由.
(2)方案(Ⅱ)是否可行?請(qǐng)說明理由.
(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求證:;
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即T(A)==,如T(60°)=1.
①理解鞏固:T(90°)= ,T(120°)= ,若α是等腰三角形的頂角,則T(α)的取值范圍是 ;
②學(xué)以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).
(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;
(2)如圖2,若∠BAC=45°,BE的延長線與AC垂直相交于點(diǎn)F時(shí),問:EF=CF成立嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB交AB于E,F(xiàn)在AC上,∠B=∠CFD. 證明:
(1)CF=EB
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值.
例:tan75°=tan(45°+30°)===
根據(jù)以上閱讀材料,請(qǐng)選擇適當(dāng)?shù)墓浇獯鹣旅鎲栴}:
(1)計(jì)算:sin15°;
(2)某校在開展愛國主義教育活動(dòng)中,來到烈士紀(jì)念碑前緬懷和紀(jì)念為國捐軀的紅軍戰(zhàn)士.李三同學(xué)想用所學(xué)知識(shí)來測量如圖紀(jì)念碑的高度.已知李三站在離紀(jì)念碑底7米的C處,在D點(diǎn)測得紀(jì)念碑碑頂?shù)难鼋菫?5°,DC為米,請(qǐng)你幫助李三求出紀(jì)念碑的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com