【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點B,D,CD交BA的延長線于點E,CO的延長線交⊙O于點G,EF⊥OG于點F.
(1)求證:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的長.
【答案】
(1)證明:∵CB,CD分別切⊙O于點B,D,
∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,
∴∠BCO+∠COB=90°,
∵EF⊥OG,
∴∠FEB+∠FOE=90°,
而∠COB=∠FOE,
∴∠FEB=∠ECF;
(2)解:連接OD,如圖,
∵CB,CD分別切⊙O于點B,D,
∴CD=CB=6,OD⊥CE,
∴CE=CD+DE=6+4=10,
在Rt△BCE中,BE= =8,
設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,
在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,
∴OE=8﹣3=5,
在Rt△OBC中,OC= =3 ,
∵∠COB=∠FOE,
∴△OEF∽△OCB,
∴ = ,即 = ,
∴EF=2 .
【解析】(1)利用切線長定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切線的性質(zhì)得OB⊥BC,則∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)連接OD,如圖,利用切線長定理和切線的性質(zhì)得到CD=CB=6,OD⊥CE,則CE=10,利用勾股定理可計算出BE=8,設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,在Rt△ODE中,根據(jù)勾股定理得r2+42=(8﹣r)2 , 解得r=3,所以O(shè)E=5,OC=3 ,然后證明△OEF∽△OCB,利用相似比可計算出EF的長.
【考點精析】認真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y= 圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣ >0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=﹣ x+1交y軸于點B,交x軸于點A,拋物線y=﹣ x2+bx+c經(jīng)過點B,與直線y=﹣ x+1交于點C(4,﹣2).
(1)求拋物線的解析式;
(2)如圖,橫坐標為m的點M在直線BC上方的拋物線上,過點M作ME∥y軸交直線BC于點E,以ME為直徑的圓交直線BC于另一點D,當點E在x軸上時,求△DEM的周長.
(3)將△AOB繞坐標平面內(nèi)的某一點按順時針方向旋轉(zhuǎn)90°,得到△A1O1B1 , 點A,O,B的對應點分別是點A1 , O1 , B1 , 若△A1O1B1的兩個頂點恰好落在拋物線上,請直接寫出點A1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx﹣3(k≠0)的圖象與x軸,y軸分別交于A,B兩點,與反比例函數(shù)y= (x>0)交于C點,且AB=AC,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數(shù)的解析式;
(2)是否存在點P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在距離鐵軌200米的B處,觀察由南寧開往百色的“和諧號”動車,當動車車頭在A處時,恰好位于B處的北偏東60°方向上;10秒鐘后,動車車頭到達C處,恰好位于B處的西北方向上,則這時段動車的平均速度是( )米/秒.
A.20( +1)
B.20( ﹣1)
C.200
D.300
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,E、F分別是AD、BC的中點,CE、AF分別交BD于G、H兩點.
求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為( )
A.2017π
B.2034π
C.3024π
D.3026π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青島市某大酒店豪華間實行淡季、旺季兩種價格標準,旺季每間價格比淡季上漲 .下表是去年該酒店豪華間某兩天的相關(guān)記錄:
淡季 | 旺季 | |
未入住房間數(shù) | 10 | 0 |
日總收入(元) | 24000 | 40000 |
(1)該酒店豪華間有多少間?旺季每間價格為多少元?
(2)今年旺季來臨,豪華間的間數(shù)不變.經(jīng)市場調(diào)查發(fā)現(xiàn),如果豪華間仍舊實行去年旺季價格,那么每天都客滿;如果價格繼續(xù)上漲,那么每增加25元,每天未入住房間數(shù)增加1間.不考慮其他因素,該酒店將豪華間的價格上漲多少元時,豪華間的日總收入最高?最高日總收入是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com