一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件,為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價1元,月銷售量可增加2萬件,設(shè)每件產(chǎn)品售價為x元.
(1)設(shè)月銷售利潤W(萬元),請用含有銷售單價x(元)的代數(shù)式表示w;
(2)為獲得最大銷售利潤,每件產(chǎn)品的售價應(yīng)為多少元?此時,最大月銷售利潤是多少?
(3)為使月銷售利潤達(dá)到480萬元,且按物價部門規(guī)定此類商品每件的利潤率不得高于80%,每件產(chǎn)品的售價為多少?
【答案】分析:(1)通過理解題意,找出題目中所給出的函數(shù)關(guān)系,列出二次函數(shù)關(guān)系式;
(2)在通過二次函數(shù)最值的求法求最值解決問題;
(3)月銷售利潤為480萬時,代入函數(shù)解析式根據(jù)要求解答.
解答:解:(1)根據(jù)題目可得函數(shù)式:
W=(x-18)[20+2(40-x)]
=-2x2+136x-1800,
即月銷售利潤W=-2x2+136x-1800;
(2)根據(jù)二次函數(shù)求最值的方法,
由W=-2x2+136x-1800得:
W=-2(x-34)2+512
當(dāng)x=34時,W有最大值512.
即當(dāng)售價為34元/件時最大利潤為512萬元.
(3)當(dāng)W=480時
-2x2+136x-1800=480
解得x1=30,x2=38,
又∵38>18×(1+80%)
∴x=30.
答:每件產(chǎn)品的售價為30元時,月銷售利潤達(dá)到480萬元且每件的利潤率不得高于80%.
故答案為(1)月銷售利潤W=-2x2+136x-1800;
(2)當(dāng)售價為34元/件時最大利潤為512萬元;
(3)每件產(chǎn)品的售價為30元時,月銷售利潤達(dá)到480萬元且每件的利潤率不得高于80%.
點評:本題考查了二次函數(shù)在實際生活中的應(yīng)用以及二次函數(shù)求最值的方法,解題的關(guān)鍵在于對二次函數(shù)性質(zhì)掌握的熟練程度.
科目:初中數(shù)學(xué)
來源:第26章《二次函數(shù)》?碱}集(18):26.3 實際問題與二次函數(shù)(解析版)
題型:解答題
一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.
查看答案和解析>>