【題目】如圖,在矩形ABCD中,AB=24厘米,BC=10厘米,點(diǎn)P從A開始沿AB邊以4厘米/秒的速度運(yùn)動,點(diǎn)Q從C開始沿CD邊2厘米/秒的速度移動,如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.
(1)當(dāng)t=2秒時(shí),求P、Q兩點(diǎn)之間的距離;
(2)t為何值時(shí),線段AQ與DP互相平分?
(3)t為何值時(shí),四邊形APQD的面積為矩形面積的?
【答案】(1)PQ=cm;(2)當(dāng)t=4時(shí),AQ與DP互相垂直平分;(3)當(dāng)t=3時(shí),四邊形APQD的面積為矩形面積的.
【解析】
(1)當(dāng)t=2秒時(shí),表示出QC,AP的長,利用勾股定理求出PQ的長即可;
(2)根據(jù)線段AQ與DP互相平分,則四邊形APQDA為矩形,也就是AP=DQ,分別用含t的代數(shù)式表示,解出即可;
(3)用t表示出四邊形APQD的面積,再求出矩形面積的進(jìn)而得出即可.
解:(1)如圖所示:連接PQ,過點(diǎn)P作PE⊥DQ于點(diǎn)E,
∵AB=24厘米,BC=10厘米,點(diǎn)P從A開始沿AB邊以4厘米/秒的速度運(yùn)動,點(diǎn)Q從C開始沿CD邊2厘米/秒的速度移動,
∴當(dāng)t=2秒時(shí),QC=4cm,AP=8cm,
∴DQ=24-QC=20,則EQ=12,
∴PQ=(cm),
(2)∵AP=4t,DQ=24-2t,
當(dāng)線段AQ與DP互相平分,則四邊形APQD為矩形時(shí),
則AP=DQ,即4t=24-2t,
解得:t=4.
故t為4秒時(shí),線段AQ與DP互相平分;
(3)∵P在AB上,
∴S=(DQ+AP)AD,
=(4t+24-2t)×10,
=10t+120(0<t≤6),
S矩形ABCD=10×24=240,
∴10t+120=×240,
解得:t=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個(gè)邊長均為1的正方形按如圖所示的方式擺放,A1,A2分別是正方形對角線的交點(diǎn),則重疊部分的面積和為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E、F、G、H分別在菱形ABCD的各邊上,且AE=AH=CF=CG.
(1)求證:四邊形EFGH是矩形;
(2)若AB=6,∠A=60°.
①設(shè)BE=x,四邊形EFGH的面積為S,求S與x之間的函數(shù)表達(dá)式;
②x為何值時(shí),四邊形EFGH的面積S最大?并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);
(2)如圖②,若射線OC在∠AOB內(nèi)部繞O點(diǎn)旋轉(zhuǎn),當(dāng)∠BOC=α時(shí),求∠DOE的度數(shù).
(3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫出圖形,直接寫出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,,,平分,平分,求的度數(shù).
(2)如果(1)中,其他條件不變,求的度數(shù).
(3)如果(1)中其他條件不變,則的度數(shù)為 .(直接寫出結(jié)果)
(4)從(1)、(2)、(3)的結(jié)果能看出的規(guī)律是:與有什么關(guān)系,與哪個(gè)角的大小無關(guān)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-4,0)、B(2,0),點(diǎn)C在y軸的正半軸上,且三角形ABC的面積為.
(1)求點(diǎn)C的坐標(biāo).
(2)過O點(diǎn)作OD平行于AC交CB于點(diǎn)D,問:x軸上是否存在一點(diǎn)P,使S△PBD=?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若∠ACO=30°,射線CA繞C點(diǎn)以每秒3°的速度逆時(shí)針旋轉(zhuǎn)到CA′,射線OB繞O點(diǎn)以每秒10°的速度逆時(shí)針旋轉(zhuǎn)到OB′.當(dāng)OB轉(zhuǎn)動一周時(shí)兩者都停止運(yùn)動.若兩射線同時(shí)開始運(yùn)動,在旋轉(zhuǎn)過程中,經(jīng)過多長時(shí)間,CA′∥OB′?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三角形ABC,D為AB邊上一點(diǎn).
(1) 過點(diǎn)D畫線段BC的平行線DE,交AC于點(diǎn)E;過點(diǎn)A畫線段BC的垂線AH,垂足為點(diǎn)H.
(2)用符號語言分別描述直線DE與線段BC及直線AH與線段BC的位置關(guān)系.
(3)比較大。壕段BH 線段BA,理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為爭創(chuàng)全國文明衛(wèi)生城,2008年市政府對市區(qū)綠化工程投入的資金是2000萬元,2010年投入的資金是2420萬元,且從2008年到2010年,兩年間每年投入資金的年平均增長率相同.
(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;
(2)若投入資金的年平均增長率不變,那么該市在2012年需投入多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,則∠DAB的度數(shù)是______°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com