【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
【答案】(1)相切;(2).
【解析】試題分析:(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計算即可.
試題解析:(1)MN是⊙O切線.
理由:連接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切線.
(2)由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO=OC=2,BC=2
∴S陰=S扇形OAC﹣S△OAC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移多少厘米時能與⊙O相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC為等邊三角形,點D為AC上的一個動點,點E為BC延長線上一點,且BD=DE.
(1)如圖1,若點D在邊AC上,猜想線段AD與CE之間的關(guān)系,并說明理由;
圖1
(2)如圖2,若點D在AC的延長線上,(1)中的結(jié)論是否成立,請說明理由.
圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(2,0),B(0,4),若以B,O,C為頂點的三角形與△ABO全等,則點C的坐標(biāo)不能為( 。
A.(0,﹣4)B.(﹣2,0)C.(2,4)D.(﹣2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AD⊥CD,BE⊥CD,AD=3,DE=4,則BE= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題:
例題:若++-+=,求和的值.
解:++-+=
+++-+=
()+(-)=
-=
-,
問題:(1)若--=, 求的值;
(2)已知的三邊長都是正整數(shù),且滿足--+│3-│=,請問是怎樣形狀的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市教育局決定分別配發(fā)給一中8臺電腦,二中10臺電腦,但現(xiàn)在僅有12臺,需
在商場購買6臺. 從市教育局運一臺電腦到一中、二中的運費分別是30元和50元,從商場
運一臺電腦到一中、二中的運費分別是40元和80元. 要求總運費不超過840元,問有幾
種調(diào)運方案?指出運費最低的方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是邊長為1的正方形ABCD的對角線,BE平分∠DBC交DC于點E,延長BC到點F,使CF=CE,連接DF,交BE的延長線于點G.
(1)求證:△BCE≌△DCF;
(2)求CF的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com