【題目】1)問題發(fā)現(xiàn):如圖(1),在OABOCD中,OAOB,OCOD,∠AOB=∠COD36°,連接AC,BD交于點M.①的值為   ;②∠AMB的度數(shù)為   ;

2)類比探究 :如圖(2),在OABOCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,連接AC,交BD的延長線于點M.請計算的值及∠AMB的度數(shù).

3)拓展延伸:在(2)的條件下,將OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M.若OD1,OB,請直接寫出當(dāng)點C與點M重合時AC的長.

【答案】1)①1;②36°;(2=,∠AMB=90°;(334

【解析】

1)①由∠AOB=COD推出∠COA=DOB,利用邊角邊即可證COADOB全等,即可求出結(jié)果;
②先證出∠CAO與∠DBO相等,分別加∠AOB,∠AMB,結(jié)果仍相等,即可得到∠AOB=AMB=36°;
2)證明DOBCOA相似即可求出ACBD的值,再通過對頂角相等及∠OBD=CAO即可證出∠AMB的度數(shù)為90°;
3)分點M在直線OA的左側(cè)和右側(cè)兩種情況討論,利用相似三角形對應(yīng)邊的比設(shè)未知數(shù),在RtAMB中利用勾股定理構(gòu)造方程即可求出AC的長.

解:(1)①∵∠AOB=COD=36°,
∴∠AOB+DOA=COD+DOA
∴∠COA=DOB,
又∵OA=OB,OC=OD,
∴△COA≌△DOBSAS),
AC=BD
=1,
故答案為:1;
②設(shè)AOBD交于點E,
由①知,COA≌△DOB
∴∠CAO=DBO,
∵∠AOB+DBO=DEO,
AMB+CAO=DEO,
∴∠AOB=AMB=36°,
故答案為:36°;

2)在OABOCD中,
∵∠AOB=COD=90°,∠OAB=OCD=30°
tan30°=,
∵∠AOB+DOA=COD+DOA,
即∠DOB=COA,
∴△DOB∽△COA
,
DBO=CAO
∵∠DBO+OEB=90°,∠OEB=MEA,
∴∠CAO+MEA=90°,
∴∠AMB=90°,
=,∠AMB=90°;

3)①如圖3-1,當(dāng)點M在直線OB左側(cè)時,
RtOCD中,∠OCD=30°,OD=1,
CD=2,
RtOAB中,∠OAB=30°,OB=
AB=2,
由(2)知,∠AMB=90°,且=
∴設(shè)BD=x,則AC=AM=x,
RtAMB中,
AM2+MB2=AB2,
∴(x2+x+22=22,
解得,x1=3,x2=-4(舍去),
AC=AM=3;

②如圖3-2,當(dāng)點M在直線OB右側(cè)時,
RtAMB中,
AM2+MB2=AB2,
∴(x2+x-22=22
解得,x1=4,x2=-3(舍去),
AC=AM=4,

綜上所述,AC的長為34

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的⊙O分別與x軸,y軸交于A,D兩點,⊙O上兩個動點B,C,使∠BAC45°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點BC分別在反比例函數(shù)y=y=上,連接OBOC,BCOBOC,則的值為(

A.5B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與BC重合),∠ADE=∠B=αDEAC于點E,且cosα=.下列結(jié)論:①△ADE∽△ACD;當(dāng)BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8④0<CE≤6.4.其中正確的結(jié)論是________.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,AB=8,B=120°,沿過菱形不同的頂點裁剪兩次,再將所裁下的圖形拼接,若恰好能無縫,無重疊的拼接成一個矩形,則所得矩形的對角線長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtACBRtAEF中,∠ACB=∠AEF90°,若點PBF的中點,連接PC,PE

(1) 如圖1,若點E,F分別落在邊AB,AC上,求證:PCPE;

(2) 如圖2,把圖1中的△AEF繞著點A順時針旋轉(zhuǎn),當(dāng)點E落在邊CA的延長線上時,探索PCPE的數(shù)量關(guān)系,并說明理由.

(3) 如圖3,把圖2中的△AEF繞著點A順時針旋轉(zhuǎn),點F落在邊AB上.其他條件不變,問題(2)中的結(jié)論是否發(fā)生變化?如果不變,請加以證明;如果變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點,ODBC于點D,過點C作O的切線,交OD的延長線于點E,連接BE.

(1)求證:BE與O相切;

(2)設(shè)OE交O于點F,若DF=1,BC=2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點C坐標(biāo)為(﹣1,0),tan∠ACO2.一次函數(shù)ykx+b的圖象經(jīng)過點BC,反比例函數(shù)y的圖象經(jīng)過點B

1)求一次函數(shù)關(guān)系式和反比例函數(shù)的關(guān)系式;

2)當(dāng)x0時,kx+b0的解集為   ;

3)若x軸上有兩點E、F,點E在點F的左邊,且EF1.當(dāng)四邊形ABEF周長最小時,請直接寫出點E的橫坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊答案